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Quiz III

Follow Lecture X in order to create an IBM Qiskit, DWave Leap, and Amazon Web Services account.

Access Amazon Braket on AWS and execute the QAOA example that we will show at the end of the lecture
today.

Update a PDF with a proof that you have created each account and that you have executed the AWS Braket
QAOA tutorial.
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Agenda

A Quantum Optimization Algorithm

Quantum Adiabatic Algorithm

Adiabatic Quantum Computing

Quantum Approximate Optimization Algorithm (QAOA)
QAOA for Constrained Optimization Problems

Quantum Alternating Optimization Ansatz

QAOA in the Real World

Amazon Braket Exercise
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A Quantum Optimization Algorithm

1) Map a QUBO Objective function into Ising form and assign the logical identity of each spin variable to a qubit in the
processor.
x; = (si+1)/2 - |xi)
2) Apply single-qubit rotations to every qubit to put the state of the QPU in superposition of all possible solutions of the

optimization problem (Hadarmard gates)
1 2" ,
YN quobits = Nex E n:1|SOIUtl0n(Tl))n ‘@>

(3) Apply two level gates and single qubits rotations to change the state, having some smart idea on how to increase the
2
value of | Wy, _arget|

Algorithms are difficult to design because you are doing matrix multiplication with matrices of dimensions
2N x 2N _ nature does it for you! you don’t need to do it but good luck simulating it

(4) Measure the state, read the qubits (they are a single bitstring after measurement) and hope to find the target(s).

(5) Repeat the procedure many times and keep the best result.
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The Quantum Adiabatic Algorithm

AQC is based on a property of the time-dependent Schrodinger Albash, Lidar

L i . Rev. Mod. Phys. 90, 015002 (2018)
equation — the «adiabatic theorem. https://arxiv.ora/abs/1611.04471

Einstein’s “Adiabaten hypothese ”: “If a system be affected in a reversible adiabatic way,

allowed motions are transformed into allowed motions” (Einstein, 1914). y A_p0|_|0ni 1989

(1) Switch on a quantum interaction in your system ] E'.n?]'.la 19914;)98

(2) Take the spectrum of possible energies of your quantum system as a function of the ] BIS Ilinolr é 99
degrees of freedom and set the state to a well-defined energy (not metastable states) ] Frc;o_ ; 001
which is ranked nt in order of magnitude (e.g., the second smallest) o rann

(3) Do any Schradinger evolution (no measurement! no noise!) that changes the energy
states «sufficiently slows.

(4) Measure the energy of the state. You will find with 100% probability that the energy is
ranked also nth

Adiabatic evolution (e.g., Slow Schrodinger) preserves the energy ranking of your system.
The smallest energy state (ground state) also maps into the ground state at the end.

IDEA: map objective function into energy. Start from easy problem -
to solve with known solution and modify slowly to difficult. Measure Adiabatic evolution
unknown solution

(() EEIeNCECIaIN&ECEOhn I{lltér A | ’ T E P P E R l@ Universities Space Research Association


https://arxiv.org/abs/1611.04471

Carnegie Mellon University

Solving ISING/QUBOs using Quantum Computing - How?

Adiabatic Quantum Computing
1. Write objective function into energy of a Quantum System (ISING=QUBOcMINLP).

2. Start from easy problem to solve with known solution and modify slowly to difficult.

3. Measure unknown solution
» Property of time-dependent Schroedinger equation — the «adiabatic theorem».

Initial superposition = ;emmmmmmmmmmeeeo
1 . . 1
| p steps discretized |}

1
1

Using different models of Quantum Computers .
«  Gate-based computers I { adiabatic pathway_ |
— For solving QUBOSs, we can use algorithms like:
« Quantum Approximate Optimization Ansatz (QAOA)
« Variational Quantum Eigensolver (VQE)
For optimization, algorithms can be understood as discretized adiabatic
computation
— IBM/Google quantum computers are gate-based
¢ Quantum annealers
— They run a single quantum algorithm, quantum annealing
Finite temperature implementation of adiabatic quantum evolution

Optimal solution

— Analog computation | .
D-Wave quantum annealer is the best-known example b \ Adiabatic pathway
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Adiabatic Quantum Computation

Encoding solution of a problem as the ground state of a quantum

Hamiltonian.

Initially proposed as an algorithm that simulated quantum

fluctuation and tunneling

 Contrary to thermal fluctuations in Simulated Annealing
Problem Hamiltonian H

From an objective function we can construct a Hamiltonian on n qubits by
replacing x € {0,1}" with z € {—1, +1}" obtaining a polynomial

f(z) = Z ae 1_[2]'
Cc{1,..n} j€ee
We replace the Pauli z operator a7 for each z; variable leading to

He =Yecqr,.np% Qjec 0f°
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Energy

Classical path -

Tunnel effect

Solution Solution

Quantum Tunnelling Adiabatic evolution

3/, o0 0 0 0 0 0 0]
o ~1, o0 0 0 0 0 0
o o 14 o o 0o 0o o0
o o o “ o o 0o o0
o o o o “1, 0o 0o o
0 0 0 0 o ~1, 0o o
0 0 0 0 0 o ~1, o
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Quantum Approximate
Optimization Algorithm
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QAOA Tutorial Outline

» Quantum Approximate Optimization
Algorithm: review and status

READING LIST

= Quantum Approximate Optimization with Hard

and Soft Constraints. Hadfield, S., Wang, Z., Rieffel, E. G.,
O'Gorman, B., Venturelli, D., & Biswas, R. (2017, November).
In Proceedings of the Second International Workshop on Post Moores Era

* The «Quantum Alternating Operator Ansatz» Supercomputing (pp. 15.21). ACM.
= Mixing Operators = From the quantum approximate optimization
= Examples algorithm to a quantum alternating operator
Ansatz Hadfield, S, Z. Wang, B. O'Gorman, E. G. Rieffel, D. Venturelli,
and R. Biswas. arXiv preprint arXiv:1709.03489 (2017). Algorithms (2019).
= Compiling and Executing « Best Paper Award MDPI Algorithms
* The gate synthesis problem Journal

» Review of compilation methods
= Compiling framework in nearest-
neighbor architectures
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Quantum Approximate Optimization Algorithm

« (Gate-based quantum algorithm for QUBO
optimization
 [teratively alternates p times between applying two
sets of operators: Mixing and Phase
Shifting/Driving
— Induce entanglement and the objective function
« Requires as many qubits as the size of the problem

» Requires polynomially many gates compared to the
problem size

« Is an approximation algorithm:

— One can theoretically prove that solution to any
problem within a certain class using this algorithm
will always be in a range (approximation ratio) of
the true optimal

P
Sesagzeeeessssssscaceeee oo

I+ — —]
|+ — 'VYIHA = B1HB e—l’YzHA —iB2Hp —m

...............................

B e LT

Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator
Guido Pagano, Aniruddha Bapat, Patrick Becker, Katherine S. Collins, Arinjoy De, Paul W. Hess, Harvey B. Kaplan, Antonis Kyprianidis, Wen Lin Tan,
Christopher Baldwin, Lucas T. Brady, Abhinav Deshpande, Fangli Liu, Stephen Jordan, Alexey V. Gorshkov, Christopher Monroe

Proceedings of the National Academy of Sciences Oct 2020, 117 (41) 25396-25401; DOI: 10.1073/pnas.2006373117

 For MAXCUT of regular 3-degree graphs QAOA with p=1 has approximation ratio of 0.6942 vs. 2/3 of random guessing.
* For a satisfiability problem E3Lin2, QAOA with p=1 gave the best approximation ratio at the point.
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Origins of the QAOA
18,7) = Qp(B,7) |s)

A Quantum Approximate Optimization Algorithm

Edward Farhi and Jefirey Goldstone Qp ()8’ Fy) — UM (Bp) UP (f)/p) .. UM (61 )UP (f)/l)

Center for Theoretical Physics

Massachusetts Institute of Technology l
s)
Cambridge, MA 02139 1

Sam Gutmann .

: 1 Up(m) — Um(B1) = Up(r2) -+ —| Up() [—| Um(Bo) |-
Abstract

We introduce a quantum algorithm that produces approximate solutions for combinatorial op- [S)n - -— 1 — o0 e - /-A

timization problems. The algorithm depends on an integer p > 1 and the quality of the approx- s
imation improves as p is increased. The quantum circuit that implements the algorithm consists e

---------

of unitary gates whose locality is at most the locality of the objective function whose optimum is = =

sought. The depth of the circuit grows linearly with p times (at worst) the number of constraints.

If p is fixed, that is, independent of the input size, the algorithm makes use of efficient classical pre- U U
ma(B1 Mk (B1)

processing. If p grows with the input size a different strategy is proposed. We study the algorithm

as applied to MaxCut on regular graphs and analyze its performance on 2-regular and 3-regular ULL_] ( ﬂl)

graphs for fixed p. For p = 1, on 3-regular graphs the quantum algorithm always finds a cut that

is at least 0.6924 times the size of the optimal cut. UM,2(161) U ME+1 (ﬁl)

. | Unmj+1(B1) i
FP(’YHB) - (7:ﬁ|0|7?/6> Mpsz—l :

M, = max F, (v, B) lim M, = max C(z) ;

— 00
~.3 P
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QAOA

1. Design a binary optimization classical Hamiltonian (“phase separation™)

2. Design a unitary operator that can connect and allow jumps between different
states (““mixing”)

3. Prepare a QAQOA state for some parameters

1B,7) = Qp(B,7) |s)

Qp(B,7) = Um(Bp)Up(p) - - - Unm(B1)Up (1)
4. Measure the state in the computational value and compute the exp. value of C(z)

Fp(v,B8) = (7.8|C |, B) M, > M,
M, = IE%X E,(v,3) pli}nc}o M, = max C(z2)

5. Change the parameters if they are not proven optimal and repeat 3-4
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Vanilla QAOA
QUBO(Q) Za%*'zz i4i9

i=1 j=i+l
Associate one qubit to each

¥

Initialize the registers in a
superposition of all possible
bitstring

W= (2"2) ) 19

4

Assign to each superposed solution
a phase proportional (arbitrary
parameter y,)

to its objective function value

1Y) s(1) = (zN/z)_1 zseiV1E5|S>

Phase separate again with new y-,

Y e N

Mix the amplitudes by a transverse field
rotation exp(ifX) on each qubit
(arbitrary parameter)

hb)mix(l)
-1 ]
= (ZN/Z) E Bls(ﬂl,yl)elrls (Bl:yl) |S>
S

After having repeated the algorithm p times do
measure in the computational base the expectation
value of the objective function

WO = ) OByl

O EREEERE <y TEPPER

Carnegie Mellon University

N -1 .
|¢>mix(2) = (2 /2) ZSBZS(.BL Y1, B2, yz)el(rzs (BrviBava)) |s)
.

N -1 .
Whosir = (2772) ) Bis(Buy)e! s arrzEo)s)

¥

000
001
010
011
111
110
101
100
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Quantum Approximate Optimization Algorithm:
Example

Mix the amplitudes by a transverse field rotation

0) — n a o i exp(ifX) on each qubit (arbitrary parameter)
—~ hb)mix(l)
= = 2 = (2 2) z B1s(B1, y1)e'T1slFiri)|s)
) ) S
0) — | ] Now if you measure, the probability of a bitstring
o depends both on y and S in a non-linear way.
Initialization /
operator Phase separation operator —_— T —
Hadamard Gates dependent on a parameter y, E - H Vou need to
" 2l exp(iBZ,Z,)|s15,) = eiY1S1Sz|5152) CHHH schedule the gates
W), = N z solution(n)) ‘ / T H H_H for every term of
2 n=1 Logical 2-qubit gate representing the Ising interaction {HH H the objective
_ (ZN/Z) z 5) LN T H H M} function!
; [Whpsy === > etn|solution(n) —a
V2N Lan=1
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Quantum Approximate Optimization Algorithm:
Example a N\

Now if you measure, the probability of
0) — T o ] B m — Xk a bitstring depends both on y and g in
—~ 2 -~ ;\: a non-linear way.
0) — o 1 <L o L X It is exponentially difficult to predict or
:_)s = DE =) DS simulate the probability
IBos(Bi, V1, Bas V2 o B ¥)|” 10 find the
0) — — — — - ~ —RE optimal unknown solution s*

[¥)qa0aw)
-1 _
- (ZN/Z) Z BZS(ﬁli V1, :821 V2, e ,Bp, yp)elFls(ﬁLYl;ﬁz;YZ;---;ﬁp')/p) |S>
S

For p — oo you can map this evolution to AQC; discrete becomes continuous; so, you know how to do it.
For finite p there 1s currently not a lot of guidance, big sector of research.

The search over the parameter space y and [ is done heuristically (e.g., Gradient descent)
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QAOA for Constrained
Optimization Problems
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QAOA for Constrained Combinatorial Optimization

* Stay in the computational subspace!

Add phases again
with new y

Associate one qubit to each (J;

Mix the system by generating a

Initialize the registers with a candidate
superposition of the initial solution

solution found through genetic
algorithm or greedy search » with all possible others (arbitrary
parameter)

|p),,=1011010101100)
|W),;=0.|011010101100)+ 3, By | b

Mix with new [3*

2

Assign to each superposed
solution a phase proportional

(arbitrary parameter)
to its objective function value
| W), =0e"Ein| 011010101100)

+ 2, Be"E| o)

Only the logical subspace

V2 W)= 55 BalSn_
All 2N bitstrings
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The Problem of Hard Constraints

QUBO(Q) Za 4, +Z Z i4i9

=l =i+l What you would want is to start from a
classical bitstring, and then be able to
4 ™ Penalty , “mix 1t coherently in the subspace
2 q; = k | 2 C(Z 7s k) where the constraint is satisfied

Enforcing the same number of bits=1 is the
same as doing two spln flips
XY =s's +s s

|001)  a|001)+h|010) a’ | 001)+b* | 010)+c” | 100)
Possible solution for these <\/ e
constraints: XY -Mixers.

Difficult to scale, does not
guarantee results, hardness
Is large softness

0 0

1 0
10 cos % isinZ 0
XY(0) = 0 ising cos g 0
0 0 0 1
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AOA Applications

¢ Maximum Cut

* Max-SAT, Min-SAT, NAE-SAT
» Set Splitting

 MaxE3LIN2

» Max-ColorableSubgraph

» Graph Partitioning

* Maximum Bisection

* Max Vertex k-Cover

« MaxIndependentSet

« MaxClique

*  MinVertexCover

« MaxSetPacking

* MinSetCover

« TSP

» SMS with various metrics and constraints

Objective Function: Soft Constraints
Feasible States: Hard Constraints

ectrical & Computer
 ENGINEERING
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Quantum Approximate Optimization
with Hard and Soft Constraints

Stuart Hadfield*, Zhihui Wang™**, Eleanor G. Rieffel™,

Bryan O’Gorman™’, Davide Venturelli***, Rupak Biswas"
* Department of Computer Science, Columbia University, New York, NY
* Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA
** Universities Space Research Association, Mountain View, CA
TStinger Ghaffarian Technologies, Inc., Greenbelt, MD

ABSTRACT

Challenging computational problems arising in the practical world
are frequently tackled by heuristic algorithms. Small universal quan-
tum computers will emerge in the next year or two, enabling a sub-
stantial broadening of the types of quantum heuristics that can be
investigated beyond quantum annealing. The immediate question
is: what experiments should we prioritize that will give us insight
into quantum heuristics? One leading candidate is the quantum
approximate optimization algorithm (QAOA) metaheuristic. In this
work, we provide a framework for designing QAOA circuits for
a variety of combinatorial optimization problems with both hard
constraints that must be met and soft constraints whose violation
we wish to minimize. We work through a number of examples, and
discuss design principles.

CCS CONCEPTS

+ Mathematics of computing — Approximation algorithms;
« Hardware — Emerging technologies; Quantum computa-
tion; « Theory of computation — Quantum computation theory;
Mathematical optimization;

advantage, and if so, how to design quantum algorithms that real-
ize such advantages. Today, challenging computational problems
arising in the practical world are frequently tackled by heuristic
algorithms, which by definition have not been analytically proven
to be the best approach, or even proven analytically to outperform
the best approach of the previous year. Rather, these algorithms are
empirically shown to be effective, by running them on characteristic
sets of problems, or demonstrating their effectiveness in practical
applications. As prototype quantum hardware emerges, this ap-
proach to algorithm design becomes available for the evaluation of
quantum heuristic algorithms.

For several years now, special-purpose quantum hardware has
been used to explore one quantum heuristic algorithm, quantum
annealing. Emerging gate-model processors, which are universal
in that, once scaled up, they can run any quantum algorithm, will
enable investigation of a much broader array of quantum heuristics
beyond quantum annealing. Within the last year, IBM has made
available publicly through the cloud a 5-qubit gate-model chip [13],
and announced recently an upgrade to a 17-qubit chip. Likewise,
Google [3] and Rigetti Computing [22], anticipate providing proces-
sors with 40-100 qubits within a year or two [18]. Many academic

TEPPER
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Alternating Operator Ansatz

Qp(B,7) = Um(Bp)Up () - - - Um(B1)Up(11)

N

—1 B H M — i’}/ H P
B.v) =Qu(B,7)]s) € €
/ Some unitary respecting: Some unitary
* Preserve the feasible subspace
- . ; » Provide all-to-all nonzero transitions respectlng
Some Inltlal State respectlng: between a” feasible states Is dlagonal |n the Computatlonal
* Itis a superposition of several solutions « Non-necessarily time evolution of a basis
in the feasible subspace local Hamiltonian * The spectrum of Hp encodes the

objective function

Hy|x) = f(x)[x)
'(() EEIeNCt&(ﬁ{i?(ECEOhn ﬁg h | ’ T E P P E R l@ Universities Space Research Association
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Alternating Operator Ansatz

Node u is L
coloredbyc |, — Z Z Tu.aTy.a
X :1 {H!U}EE a=1

u,c

Phase Separator (QUBO objective function)

4—K 1 "
TH{:, =— Pl + 2 Z Z (Zua+ Zva — ZuaZva)

{uv}eE a=1

Initial state:

W), = ﬁ(uoomm+\010~-0>+\0~-01>)

€ ERGNEERRVG <y TEPPER

Babbush (2017)
\erstraete (2009)
Wang (2009)
Childs (2002)
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Engineering Mixing Operators

d
Hff:?;) = Z (XoXat1 +YaYat1)
o Respects the Hamming

exp(iH,;g) is difficult to implement Weight constraint

L\,\/ ‘
3-coloring 4-coloring
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Desing Freedom and Tradeoffs

d -
pylenc) _ Z (XoXas1 + YaYorr) Respects the Hamming

ring Weight constraint
(1L

exp(iH jng) is difficult to implement

n

ool 2 .
r"\w 8{. ﬁ~.: UM — H UlE?Iila,cI)'lty HaeparityEXp(IXaXa+1+YaYa+1)

E\,J) 1 P .
f'ﬁ% }. UM:‘[U1U3U5U7] [U2U4U6U8],[U1U3U5U7] [U,U,UgUg]....
3 - '
! f. I is couples only distance 2;
.'"5- :1-:5 to beprlepeat(?é ?(IZt times2

All these 2-qubit k?/2 gates need to be scheduled
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Other Mixers (controlled XY)

Finding the largest induced subgraph colorable by k colors

Node u is colored
by c or uncolored

(c=0)
1

uc—

ectrical & Computer
 ENGINEERING

—He = = > Zuo
v

<y TEPPER

XY

Still needs to be compiled to 2 qubit gates

All these gates need to be scheduled
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Mixers Navigation&Scheduling

In traveling salesman encoding
k ’}

n
D, duw ) (Yugoer + Xo xu )
j=1

{u,v}leE

#

X,;=1 if city v is visited as j*

(enc) + o+ — + o+
Hpg i it fuwy = PuiviPuiPvi T Ouidv jou o

w, it M, i (TR At TR T TR R TR 2

(partitioned using edge coloring and parity
~(n-1)n2/4 mixers)
(needs to be repeated n(n-1)/2 times for all-to-all)

O EREEERE <y TEPPER

In single machine scheduling

5

Targets/Tasks
= N w
=] =] =]

=]

-100 0 100 200
Observation Windows

Xy=1 if job j starts at time t

C= ZWJ Z Xj,e(t + pj — dj)

J (dj—pj)<t<h

(enc) + + - + o+ - -
HTS 23} T Sz JS+pj SJ tS SJ t+p; + Si,tSj,t+piSi,t+pj Sj,t

(But if we add release dates then we need
controls on the no-overlap constraint)
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Zoology of Ansatze

(See Hadfield et al 2018 — «Quantum Alternating Operator Ansatz»)

. ) ] From the Quantum Approximate
Bitflip mixers XY mixers Optimization Algorithm to a

« Maximum Cut « Max-ColorableSubgraph
« Max-SAT, Min-SAT, NAE-SAT « Graph Partitioning

. Set Splitting . Maximum Bisection et e Zhit Wang . Brvan O Gorman' 1%, Bleanor 6. Riefiel’
i M a XE 3 LI N 2 d M aX Ve rteX k‘ Cove r * Department of Computer Science, Columbia University, New York, N

" Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA
** USRA Research Institute for Advanced Computer Science (RIACS), Mountain View, CA
T Stinger Ghaffarian Technologies, Inc., Greenbelt, MD

Quantum Alternating Operator Ansatz

* Berkeley Quantum Information and Computation Center and Departments of Chemistry and Computer Science,

Controlled Bitflip mixers Controlled XY mixers Univesity of Cafoni, Berkeley, CA
 MaxIndependentSet * Max-k-ColorableInducedSubgraph | s 200

« MaxClique « MinGraphColoring

« MinVertexCover » MinCliqueCover cessors smergs, enoing Blementation of o e sarichy of sigodtoms. OF

particular interest are quantum heuristics, which require experimentation on

b M a Xsetpa Ckl n g " quantum hardware for their evaluation, and which have the potential to sig-

. nificantly expand the breadth of applications for which quantum computers
L4 M IN Setcove r Pe rm utatio nm ixe rs have an established advantage. A leading candidate is Farhi et al.’s Quantum
Approximate Optimization Algorithm, which alternates between applying a

° TS P cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend
this framework to allow alternation between more general families of operators.

H H H H The essence of this extension, the Quantum Alternating Operator Ansatz, is

* S M S W It h Va rl O u S m et rl CS a n d CO n St ra I n tS the consideration of general parameterized families of unitaries rather than only
those corresponding to the time-evolution under a fixed local Hamiltonian for
a time specified by the parameter. This ansatz supports the representation of a
larger, and potentially more useful, set of states than the original formulation,
with potential long-term impact on a broad array of application areas.
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The Flexible Design of NISQ Quantum Optimization

Algorithms

Vanilla QAOA (Fahri 2014) and the QAOAnNsatz
(Hadfield 2017) were just the start of the field of
modern Quantum Optimization Approaches

Variations:

= |Incomplete/Approximate: e.g. mixing of a limited
number of variables randomly selected.

=  Adaptive: e.g. changing the circuit at runtime based on
parameter exploration.

» Unstructured: e.g. the cost function could be evaluated
only by classical hardware and is not in the ansatz, like
learning in a neural network.

= Qverparametrized: e.g. some gates might have offset
angles

= Digital-Analog: i.e. global pulsing techniques that
generate multi-qubit long range interactions.

(() Electrical & Computer 7 TEPPER

ENGINEERING

Recent Review Articles:

Noisy intermediate-scale quantum (NISQ) algorithms
Bharti et al. (Jan 2021) — arXiv:2101.08448

Variational Quantum Algorithms
Cerezo et al. (Dec 2020) — arXiv:2012.09265

Input Objective fun Fyua k
6,0 o o {O(M{ e ‘})h {;

distance

Hybrid Loop
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Variational Quantum Computing - AWS view

Near-term quantum computers will be used
as CO-processors

Machine
learning

Variational
quantum
computing

Electrical & Computer

{7 ENGINEERINE

New
weights

Update
weights

Objective
function

CPU New
parameters

Update
variational
parameters

Objective
function

<y TEPPER

GPU

Calculate
batch error

QPU

e o . D Calculate

expectation
D value
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QAOA in the "Real World”
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The Gate Synthesis Problem

Quantum Circuits can be composed by single
and two-qubit gates of universal set*
CNOT, R,(q) and R,(a)

Each single qubit gate can be decomposed by
single qubit rotations. )

Ul=R,(a) R/(b) R,(9g) " %

Each two qubit gate is reversible and it is
representable by a Unitary Matrix.
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Maximum number of elementary 1-qubit gates: 15

R gates can be «virtually» compiled.
(McKay 2017 and refs)

* active research to natively support multi-qubit gates
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Maximum number of CNOTs: 3
Maximum depth assuming R, R, and
simplifications: 11
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SWAP-Compilation (rewew)

Performance of algorithms in NISQ
will depend on aspects such as gate
fidelities, parallelization, idle time,

crosstalks..

Different Metrics to optimize correlate
to final performance:

 Total Quantum Factor

e Quantum Volume

* Number of Two-Qubit Gates

« Makespan
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Example: MaxCut

S.=+1 | Defines the cut

1
U=_ 1 —8;8; ' = .
5 (1 —5i5;)| Counts the edges in the cut UPS_n<jk> Exp(|bZJ-Zk)

ZiXi Mixes the two partitions UM — ﬂj E)(p(|gXJ)

Interaction graph obtained from
quadratic objective function (MAXCUT)

PSi MX PS2 « Every edge is a gate that needs to be

-S(q1,q1)  MIX(q1) P-S(q1, 1) executed (in arbitrary order)

qu (1'3; MIX(g3) EZE‘{“‘“; - The same graph has to be executed

(gj Zj) Mix(gs) S(ng;‘) multiple times (p rounds).

Sng) @) b e - Every qubit has to complete all the gates of
saear) M) ps(ge, qr) round p before being involved in p+1

-S(g5,96) MIX(qr) P-S(qs, g6)

-S(q1,95) P-S(q1,9s5)
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Circuit Execution Schedule

Interaction graph
obtained from quadratic
objective function
(MAXCUT)
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Every edge is a gate that needs to be executed
(in arbitrary order)

The same graph has to be executed multiple
times (p rounds).

Every qubit has to complete all the gates of
round p before being involved in p+1
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Circuit Execution Schedule

Exp(i6Z,2,) Z7-Evolution Gate
Os
L/

) D— Zo
Q4
J_=x X_= J_=x /_= X_=x X_=x /_= J_= X_= J_zx | —
p 42 2 $ 42 4 p 42 2 ZQCW 2 p 42 Ln t 42 2 $ o
CZ X X CZ
X [ N e s x :
_— T T T Duration 27t,+41,
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Circuit Execution Schedule

L\
SWAP |¥) , <> |0)
From Unidirectional
Js CNOTs to SWAP
! N - panuil VR 2 AN B N
1 _ v I_‘ > l_l >
q i T i L= Igimt
’ N, N,
A4
T Z_% —X_%—Z_% —Z,H_—Z_z —X_% —Z_% T
/A - - bt X_ =17 l 7 i G W /A I 7/ W ) (R S 17/
2 73 14 T p 2 2, /2 2 31 4n /2 2 W2
X X CZ
X _-_-_ X Duration 3t,+4t,
1 1 . fr B
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Circuit Execution Schedule

SWAPS can also be
inserted as part of

the UZZ interaction
without the need to
be sequential.

SWAP+ZZ-Evolution @LU

Gate

JARY
&
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\/ \/ \/ “/
IR X5 HIZRZ- 2R HX-3 2
/4 a7, N
Y G HE s HAHE Xy K-

N/ { G )
DX KR
> 4 \ r -

o E o ey e e we  Duration 31,147, (same as SWAP)
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Circuit Execution Schedule

fast P-S (1=3)
slow P-S (1=4)
Swap (1=2)

Benchmark presented at ICAPS17

Objective: finding the makespan minimizing Gantt Schedule for p=1, p=2, N=8, N=21

_,P"Hﬁt
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Circuit Execution Schedule
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Circuit Execution Schedule

12345678
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Circuit Execution Schedule

12345678
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Circuit Execution Schedule

44
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Circuit Execution Schedule

R

ds

Oy All actions of round 1 are completed - qubit can be mixed.
Qubit 1 can start participating to round 2.
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Circuit Execution Schedule
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Circuit Execution Schedule

& ! +l.
¥ e SR AR AR

P-S(3,7) is slow on n,, n How to obtain these schedules efficiently?

)]

P-S(3,7) is fast on ny, n, E
@

E Classical planning software is useful, and
nf)‘ this is an active research field.
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Amazon Braket for QAOA

Let’s go to Amazon Braket
https://console.aws.amazon.com/braket

.(() EEleNCECIEKl 8(E char Iqta' | ’l T E P P E R l@ Universities Space Research Association


https://console.aws.amazon.com/braket

