
18-819F: Introduction to Quantum Computing
47-779/47-785: Quantum Integer Programming

& Quantum Machine Learning

Quantum Approximate (Alternating) Optimization Algorithm (Ansatz)

Lecture 12

2021.10.12

Follow Lecture X in order to create an IBM Qiskit, DWave Leap, and Amazon Web Services account.

Access Amazon Braket on AWS and execute the QAOA example that we will show at the end of the lecture

today.

Update a PDF with a proof that you have created each account and that you have executed the AWS Braket

QAOA tutorial.

Quiz III

• A Quantum Optimization Algorithm

• Quantum Adiabatic Algorithm

• Adiabatic Quantum Computing

• Quantum Approximate Optimization Algorithm (QAOA)

• QAOA for Constrained Optimization Problems

• Quantum Alternating Optimization Ansatz

• QAOA in the Real World

• Amazon Braket Exercise

Agenda

1) Map a QUBO Objective function into Ising form and assign the logical identity of each spin variable to a qubit in the

processor.

𝒙𝒊 = (𝒔𝒊 + 𝟏)/𝟐 → |𝒙𝒊⟩

2) Apply single-qubit rotations to every qubit to put the state of the QPU in superposition of all possible solutions of the

optimization problem (Hadarmard gates)

Ψ 𝑁 𝑞𝑢𝑏𝑖𝑡𝑠 =
1

2𝑁
෍

𝑛=1

2𝑁

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑛 𝑛

(3) Apply two level gates and single qubits rotations to change the state, having some smart idea on how to increase the

value of Ψ𝑛=𝑡𝑎𝑟𝑔𝑒𝑡
2

Algorithms are difficult to design because you are doing matrix multiplication with matrices of dimensions

2𝑁 × 2𝑁– nature does it for you! you don’t need to do it but good luck simulating it

(4) Measure the state, read the qubits (they are a single bitstring after measurement) and hope to find the target(s).

(5) Repeat the procedure many times and keep the best result.

A Quantum Optimization Algorithm

The Quantum Adiabatic Algorithm

AQC is based on a property of the time-dependent Schrödinger

equation – the «adiabatic theorem».

Einstein’s “Adiabaten hypothese”: “If a system be affected in a reversible adiabatic way,

allowed motions are transformed into allowed motions” (Einstein, 1914).

Albash, Lidar

Rev. Mod. Phys. 90, 015002 (2018)

https://arxiv.org/abs/1611.04471

(1) Switch on a quantum interaction in your system

(2) Take the spectrum of possible energies of your quantum system as a function of the

degrees of freedom and set the state to a well-defined energy (not metastable states)

which is ranked nth in order of magnitude (e.g., the second smallest)

(3) Do any Schrödinger evolution (no measurement! no noise!) that changes the energy

states «sufficiently slow».

(4) Measure the energy of the state. You will find with 100% probability that the energy is

ranked also nth

Adiabatic evolution (e.g., Slow Schrödinger) preserves the energy ranking of your system.

The smallest energy state (ground state) also maps into the ground state at the end.

▪ Apolloni 1989

▪ Finnila 1994

▪ Nishimori 1998

▪ Brooke 1999

▪ Fahri 2001

IDEA: map objective function into energy. Start from easy problem

to solve with known solution and modify slowly to difficult. Measure

unknown solution

https://arxiv.org/abs/1611.04471

Using different models of Quantum Computers

• Gate-based computers

– For solving QUBOs, we can use algorithms like:

• Quantum Approximate Optimization Ansatz (QAOA)

• Variational Quantum Eigensolver (VQE)

– For optimization, algorithms can be understood as discretized adiabatic

computation

– IBM/Google quantum computers are gate-based

• Quantum annealers

– They run a single quantum algorithm, quantum annealing

– Finite temperature implementation of adiabatic quantum evolution

– Analog computation

– D-Wave quantum annealer is the best-known example

Adiabatic Quantum Computing

1. Write objective function into energy of a Quantum System (ISING=QUBO⊂MINLP).

2. Start from easy problem to solve with known solution and modify slowly to difficult.

3. Measure unknown solution

• Property of time-dependent Schroedinger equation – the «adiabatic theorem».

Solving ISING/QUBOs using Quantum Computing – How?

Problem Hamiltonian 𝑯𝑪

From an objective function we can construct a Hamiltonian on 𝑛 qubits by

replacing 𝐱 ∈ 0,1 𝑛 with 𝐳 ∈ −1, +1 𝑛 obtaining a polynomial

𝑓 𝐳 = ෍

𝒞⊂ 1,…,𝑛

𝛼𝒞ෑ

𝑗∈𝒞

𝑧𝑗 =𝑒.𝑔. 𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1

We replace the Pauli z operator 𝜎𝑖
𝑧 for each 𝑧𝑖 variable leading to

𝐻𝐶 = σ𝒞⊂ 1,…,𝑛 𝛼𝒞 ⊗𝑗∈𝒞 𝜎𝑗
𝑧 =𝑒.𝑔.

1 0
0 −1 1

⊗
1 0
0 −1 2

+

1 0
0 −1 2

⊗
1 0
0 −1 3

+

1 0
0 −1 3

⊗
1 0
0 −1 1

=

ൗ3 4 0 0 0 0 0 0 0

0 ൗ−1
4 0 0 0 0 0 0

0 0 ൗ−1
4 0 0 0 0 0

0 0 0 ൗ−1
4 0 0 0 0

0 0 0 0 ൗ−1
4 0 0 0

0 0 0 0 0 ൗ−1
4 0 0

0 0 0 0 0 0 ൗ−1
4 0

0 0 0 0 0 0 0 ൗ3 4

Encoding solution of a problem as the ground state of a quantum

Hamiltonian.

Initially proposed as an algorithm that simulated quantum

fluctuation and tunneling

• Contrary to thermal fluctuations in Simulated Annealing

Adiabatic Quantum Computation

Quantum Approximate
Optimization Algorithm

▪ Quantum Approximate Optimization

Algorithm: review and status

▪ The «Quantum Alternating Operator Ansatz»

▪ Mixing Operators

▪ Examples

▪ Compiling and Executing

▪ The gate synthesis problem

▪ Review of compilation methods

▪ Compiling framework in nearest-

neighbor architectures

▪ Quantum Approximate Optimization with Hard

and Soft Constraints. Hadfield, S., Wang, Z., Rieffel, E. G.,

O'Gorman, B., Venturelli, D., & Biswas, R. (2017, November).

In Proceedings of the Second International Workshop on Post Moores Era

Supercomputing (pp. 15-21). ACM.

▪ From the quantum approximate optimization

algorithm to a quantum alternating operator

Ansatz Hadfield, S, Z. Wang, B. O'Gorman, E. G. Rieffel, D. Venturelli,

and R. Biswas. arXiv preprint arXiv:1709.03489 (2017). Algorithms (2019).

• Best Paper Award MDPI Algorithms

Journal

READING LIST
QAOA Tutorial Outline

• Gate-based quantum algorithm for QUBO
optimization

• Iteratively alternates p times between applying two
sets of operators: Mixing and Phase
Shifting/Driving

– Induce entanglement and the objective function

• Requires as many qubits as the size of the problem

• Requires polynomially many gates compared to the
problem size

• Is an approximation algorithm:

– One can theoretically prove that solution to any
problem within a certain class using this algorithm
will always be in a range (approximation ratio) of
the true optimal

Quantum Approximate Optimization Algorithm

Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator

Guido Pagano, Aniruddha Bapat, Patrick Becker, Katherine S. Collins, Arinjoy De, Paul W. Hess, Harvey B. Kaplan, Antonis Kyprianidis, Wen Lin Tan,

Christopher Baldwin, Lucas T. Brady, Abhinav Deshpande, Fangli Liu, Stephen Jordan, Alexey V. Gorshkov, Christopher Monroe

Proceedings of the National Academy of Sciences Oct 2020, 117 (41) 25396-25401; DOI: 10.1073/pnas.2006373117

• For MAXCUT of regular 3-degree graphs QAOA with p=1 has approximation ratio of 0.6942 vs. 2/3 of random guessing.

• For a satisfiability problem E3Lin2, QAOA with p=1 gave the best approximation ratio at the point.

Origins of the QAOA

1. Design a binary optimization classical Hamiltonian (“phase separation”)

2. Design a unitary operator that can connect and allow jumps between different

states (“mixing”)

3. Prepare a QAOA state for some parameters

4. Measure the state in the computational value and compute the exp. value of C(z)

5. Change the parameters if they are not proven optimal and repeat 3-4

QAOA

Associate one qubit to each qi

Initialize the registers in a

superposition of all possible

bitstring

𝜓 𝑖𝑛 = 2 ൗ𝑁 2
−1
෍

𝑆
|𝑠⟩

Assign to each superposed solution

a phase proportional (arbitrary

parameter 𝛾1)

to its objective function value

𝜓 𝑝𝑠 1 = 2 ൗ𝑁 2
−1
෍

𝑆
𝑒𝑖𝛾1𝐸𝑆|𝑠⟩

Phase separate again with new 𝛾2

After having repeated the algorithm 𝑝 times do

measure in the computational base the expectation

value of the objective function

𝜓 O 𝜓 𝑜𝑢𝑡 =෍
𝑠
O𝑠 B𝑝𝑠

2

Mix the amplitudes by a transverse field

rotation exp(𝑖𝛽𝑋) on each qubit

(arbitrary parameter)

𝜓 𝑚𝑖𝑥 1

= 2 ൗ𝑁 2
−1
෍

𝑆
B1𝑠(𝛽1, 𝛾1)𝑒

𝑖Γ1𝑠 (𝛽1,𝛾1) |𝑠⟩

000

001

010

011

111

110

101

100

𝜓 𝑝𝑠 2 = 2 ൗ𝑁 2
−1
෍

𝑆
B1𝑠(𝛽1, 𝛾1)𝑒

𝑖 Γ1𝑠 (𝛽1,𝛾1)+𝛾2𝐸𝑆 |𝑠⟩

𝜓 𝑚𝑖𝑥 2 = 2 ൗ𝑁 2
−1
෍

𝑆
B2𝑠(𝛽1, 𝛾1, 𝛽2, 𝛾2)𝑒

𝑖 Γ2𝑠 (𝛽1,𝛾1,𝛽2,𝛾2) |𝑠⟩Vanilla QAOA

Initialization

operator Phase separation operator

dependent on a parameter 𝛾1

𝜓 𝑖𝑛 =
1

2𝑁
෍

𝑛=1

2𝑁

|solution(n)

= 2 ൗ𝑁 2
−1
෍

𝑆
|𝑠⟩

Hadamard Gates

U
P

S
(γ

1
)

U
in

it

U
m

ix
(b

p
)
exp 𝑖𝛽𝑍1𝑍2 𝑠1𝑠2 = 𝑒𝑖𝛾1𝑠1𝑠2|𝑠1𝑠2⟩

Logical 2-qubit gate representing the Ising interaction

𝜓 𝑝𝑠 1 =
1

2𝑁
෍

𝑛=1

2𝑁

𝑒𝑖𝐸𝑛|𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑛 ⟩

Mix the amplitudes by a transverse field rotation

exp(𝑖𝛽𝑋) on each qubit (arbitrary parameter)

𝜓 𝑚𝑖𝑥 1

= 2 ൗ𝑁 2
−1
෍

𝑠
B1𝑠 𝛽1, 𝛾1 𝑒𝑖Γ1𝑠 𝛽1,𝛾1 |𝑠⟩

U
m

ix
(β

1
)

U
P

S
(γ

2
)

You need to

schedule the gates

for every term of

the objective

function !

Now if you measure, the probability of a bitstring

depends both on 𝛾 and 𝛽 in a non-linear way.

Quantum Approximate Optimization Algorithm:
Example

U
P

S
(g
1
)

U
in

it

U
m

ix
(b

p
)

U
m

ix
(b

1
)

U
P

S
(g
2
)

U
m

ix
(b

1
)

𝜓 QAOA 𝑝

= 2 ൗ𝑁 2
−1
෍

𝑠
B2𝑠 𝛽1, 𝛾1, 𝛽2, 𝛾2, … , 𝛽𝑝, 𝛾𝑝 𝑒𝑖Γ1𝑠 𝛽1,𝛾1,𝛽2,𝛾2,…,𝛽𝑝,𝛾𝑝 |𝑠⟩

Now if you measure, the probability of

a bitstring depends both on 𝛾 and 𝛽 in

a non-linear way.

It is exponentially difficult to predict or

simulate the probability

B2𝑠 𝛽1, 𝛾1, 𝛽2, 𝛾2, … , 𝛽𝑝, 𝛾𝑝
2

to find the

optimal unknown solution 𝑠∗

For 𝑝 → ∞ you can map this evolution to AQC; discrete becomes continuous; so, you know how to do it.

For finite p there is currently not a lot of guidance, big sector of research.

The search over the parameter space 𝛾 and 𝛽 is done heuristically (e.g., Gradient descent)

Quantum Approximate Optimization Algorithm:
Example

QAOA for Constrained
Optimization Problems

Associate one qubit to each qi

Initialize the registers with a candidate
solution found through genetic
algorithm or greedy search
|yin=|011010101100

Mix the system by generating a
superposition of the initial solution
with all possible others (arbitrary
parameter)
|ymix=a|011010101100+ ∑k bk|fk

Assign to each superposed
solution a phase proportional
(arbitrary parameter)
to its objective function value
|ymix=aeigEin|011010101100
+ ∑k bke

igEk|fk

Mix with new b*

Add phases again
with new g

* Stay in the computational subspace!

Only the logical subspace

All 2N bitstrings

|ymix= ∑S bs|s

QAOA for Constrained Combinatorial Optimization

│001 a│001+b│010 a’│001+b’│010+c’│100

XY(2,3) XY(2,3)

෍

𝒊

𝒒𝒊 = 𝒌

Enforcing the same number of bits=1 is the

same as doing two spin-flips

𝑋𝑌 = 𝑠
+
𝑠
−
+ 𝑠

−
𝑠
+

𝑪 ෍

𝒊

𝒒𝒊 − 𝒌

𝟐
Penalty

Function

Difficult to scale, does not

guarantee results, hardness

is large softness

What you would want is to start from a

classical bitstring, and then be able to

“mix it” coherently in the subspace

where the constraint is satisfied

Possible solution for these

constraints: 𝑋𝑌-Mixers.

The Problem of Hard Constraints

• Maximum Cut

• Max-SAT, Min-SAT, NAE-SAT

• Set Splitting

• MaxE3LIN2

• Max-ColorableSubgraph

• Graph Partitioning

• Maximum Bisection

• Max Vertex k-Cover

• MaxIndependentSet

• MaxClique

• MinVertexCover

• MaxSetPacking

• MinSetCover

• TSP

• SMS with various metrics and constraints

• …

Objective Function: Soft Constraints

Feasible States: Hard Constraints

QAOA Applications

Some unitary respecting:
• Preserve the feasible subspace

• Provide all-to-all nonzero transitions

between all feasible states

• Non-necessarily time evolution of a

local Hamiltonian

Some unitary

respecting:
• Is diagonal in the computational

basis

• The spectrum of 𝐻𝑃 encodes the

objective function

Some initial state respecting:
• It is a superposition of several solutions

in the feasible subspace

• It can be prepared efficiently

Alternating Operator Ansatz

▪ Babbush (2017)

▪ Verstraete (2009)

▪ Wang (2009)

▪ Childs (2002)

▪ …

Xu,c=1

Node u is

colored by c

Phase Separator (QUBO objective function)

Initial state:

Alternating Operator Ansatz

exp(iHring) is difficult to implement

Respects the Hamming

Weight constraint

3-coloring 4-coloring

Engineering Mixing Operators

34

1

3

5

7

2

4

6

8

UM=[U1U3U5U7] [U2U4U6U8] [U1U3U5U7] [U2U4U6U8]…

This couples only distance 2;

has to be repeated k/2 times

∏aparityExp(iXaXa+1+YaYa+1)

All these 2-qubit k2/2 gates need to be scheduled

Respects the Hamming

Weight constraint

exp(iHring) is difficult to implement

Desing Freedom and Tradeoffs

Xu,c=1

Node u is colored
by c or uncolored
(c=0)

Finding the largest induced subgraph colorable by k colors

XY

All these gates need to be scheduled

XY

x

x

x

x=

Still needs to be compiled to 2 qubit gates

Other Mixers (controlled XY)

In traveling salesman encoding

Xvj=1 if city v is visited as jth

(partitioned using edge coloring and parity
≈(n-1)n2/4 mixers)

(needs to be repeated n(n-1)/2 times for all-to-all)

In single machine scheduling

Xjt=1 if job j starts at time t

(But if we add release dates then we need
controls on the no-overlap constraint)

26

Mixers Navigation&Scheduling

Bitflip mixers
• Maximum Cut
• Max-SAT, Min-SAT, NAE-SAT
• Set Splitting
• MaxE3LIN2
…

Controlled Bitflip mixers
• MaxIndependentSet
• MaxClique
• MinVertexCover
• MaxSetPacking
• MinSetCover
…

XY mixers
• Max-ColorableSubgraph
• Graph Partitioning
• Maximum Bisection
• Max Vertex k-Cover
…

Controlled XY mixers
• Max-k-ColorableInducedSubgraph
• MinGraphColoring
• MinCliqueCover
...

Permutation mixers
• TSP
• SMS with various metrics and constraints
…

27

(See Hadfield et al 2018 – «Quantum Alternating Operator Ansatz»)

Zoology of Ansatze

▪ Incomplete/Approximate: e.g. mixing of a limited

number of variables randomly selected.

▪ Adaptive: e.g. changing the circuit at runtime based on

parameter exploration.

▪ Unstructured: e.g. the cost function could be evaluated

only by classical hardware and is not in the ansatz, like

learning in a neural network.

▪ Overparametrized: e.g. some gates might have offset

angles

▪ Digital-Analog: i.e. global pulsing techniques that

generate multi-qubit long range interactions.

Recent Review Articles:

Noisy intermediate-scale quantum (NISQ) algorithms

Bharti et al. (Jan 2021) – arXiv:2101.08448

Variational Quantum Algorithms

Cerezo et al. (Dec 2020) – arXiv:2012.09265

Vanilla QAOA (Fahri 2014) and the QAOAnsatz

(Hadfield 2017) were just the start of the field of

modern Quantum Optimization Approaches

Variations:

The Flexible Design of NISQ Quantum Optimization
Algorithms

Variational Quantum Computing – AWS view

QAOA in the “Real World”

Barenco et al.

(1995)

Kraus, Cirac

(2001)

Vatan, Williams

(2003)

Quantum Circuits can be composed by single

and two-qubit gates of universal set*

CNOT, Ry(q) and Rz(a)

Each single qubit gate can be decomposed by

single qubit rotations.

U1= Rz(a) Ry(b) Rz(g) eif

Each two qubit gate is reversible and it is

representable by a Unitary Matrix.

RZ gates can be «virtually» compiled.

(McKay 2017 and refs)

* active research to natively support multi-qubit gates

Maximum number of elementary 1-qubit gates: 15

Maximum number of CNOTs: 3

Maximum depth assuming RY, RZ and

simplifications: 11

The Gate Synthesis Problem

Performance of algorithms in NISQ

will depend on aspects such as gate

fidelities, parallelization, idle time,

crosstalks..

Different Metrics to optimize correlate

to final performance:

• Total Quantum Factor

• Quantum Volume

• Number of Two-Qubit Gates

• Makespan

Guerreschi and Park (2018). Two-step approach to scheduling

quantum circuits. arXiv preprint arXiv:1708.00023.

Khatri, Sumeet, et al. "Quantum assisted quantum

compiling." arXiv preprint arXiv:1807.00800 (2018).

Li, G., Ding, Y., & Xie, Y. (2018). Tackling the Qubit Mapping

Problem for NISQ-Era Quantum Devices. arXiv preprint

arXiv:1809.02573 (2018).

Oddi, Angelo, and Riccardo Rasconi. "Greedy Randomized Search

for Scalable Compilation of Quantum Circuits." International

Conference on the Integration of Constraint Programming,

Artificial Intelligence, and Operations Research. Springer, Cham,

(2018.

…

SWAP-Compilation (review)

Interaction graph obtained from
quadratic objective function (MAXCUT)

• Every edge is a gate that needs to be
executed (in arbitrary order)

• The same graph has to be executed
multiple times (p rounds).

• Every qubit has to complete all the gates of
round p before being involved in p+1

Counts the edges in the cut

Defines the cut

∑iXi
Mixes the two partitions

UPS=∏<jk>Exp(ibZjZk)

UM=∏jExp(igXj)

Example: MaxCut

n6 n8

n1 n2 n3

n4

n7

n5

q1

q5

q3

q4 q7

q6

Initial assignment

qi → ni

1 3

4 5

6 7

Interaction graph

obtained from quadratic

objective function

(MAXCUT)

30

• Every edge is a gate that needs to be executed

(in arbitrary order)

• The same graph has to be executed multiple

times (p rounds).

• Every qubit has to complete all the gates of

round p before being involved in p+1

Circuit Execution Schedule

1 3

4 5

q1

q5

q3

q4
q7

q6

Exp(iqZ1Z4)

Duration 2t2+4t1

CZCZ X X
X X

ZZ-Evolution Gate

Circuit Execution Schedule

q1

q5

q3

q4 q7

q6

SWAP |Y 3  |0

CZ X CZ X CZ

XX Duration 3t2+4t1

=

From Unidirectional

CNOTs to SWAP

1 3

4 5

Circuit Execution Schedule

SWAP+ZZ-Evolution
Gate

Duration 3t2+4t1 (same as SWAP)

SWAPS can also be
inserted as part of
the UZZ interaction
without the need to
be sequential.

Circuit Execution Schedule

1 3

4 5

q1

q5

q3

q4 q7

q6

Circuit Execution Schedule

Objective: finding the makespan-minimizing Gantt Schedule for p=1, p=2, N=8, N=21

fast P-S (t=3)

slow P-S (t=4)

Swap (t=2)

Benchmark presented at ICAPS17

1 3

4 5

q1

q5

q3

q4 q7

q6

Q14

Circuit Execution Schedule

1 3

4 5

q1

q5

q3

q4 q7

q6

Q14 Q13

1 3

4 5

Circuit Execution Schedule

1 3

4 5

q1

q5

q3

q4 q7

q6

Q14 Q13

1 3

4 5

1 3

4

5

Circuit Execution Schedule

1 3

4 5

q1

q5

q3

q4 q7

q6

Q14 Q13 Q15

1 3

4 5

1 3

4

5 3 1

4

5

Circuit Execution Schedule

1 3

4 5

q1

q5

q3

q4 q7

q6

Q14 Q13 Q15

1 3

4 5

1 3

4

5 3 1

4

5

All actions of round 1 are completed – qubit can be mixed.
Qubit 1 can start participating to round 2.

Circuit Execution Schedule

1 3

4 5

q1

q5

q3

q4 q7

q6

Q14 Q13 Q15
Q14Q13

Q15

1 3

4 5

1 3

4

5

3 1

4

5 3 1

4

5 4 1

3

53 1

4

5

3 1

4

5

PS2

Circuit Execution Schedule

n6 n8

n1 n2 n3

n4

n7

n5

q1

q5

q4

q6

How to obtain these schedules efficiently?

Classical planning software is useful, and
this is an active research field.

P-S(3,7) is fast on n1, n4

P-S(3,7) is slow on n4, n6

q3

q7

Circuit Execution Schedule

Let’s go to Amazon Braket

https://console.aws.amazon.com/braket

Amazon Braket for QAOA

https://console.aws.amazon.com/braket

