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Follow Lecture X in order to create an IBM Qiskit, DWave Leap, and Amazon Web Services account.

Access Amazon Braket on AWS and execute the QAOA example that we will show at the end of the lecture 

today.

Update a PDF with a proof that you have created each account and that you have executed the AWS Braket

QAOA tutorial.

Quiz III



• A Quantum Optimization Algorithm

• Quantum Adiabatic Algorithm

• Adiabatic Quantum Computing

• Quantum Approximate Optimization Algorithm (QAOA)

• QAOA for Constrained Optimization Problems

• Quantum Alternating Optimization Ansatz

• QAOA in the Real World

• Amazon Braket Exercise

Agenda



1) Map a QUBO Objective function into Ising form and assign the logical identity of each spin variable to a qubit in the 

processor.

𝒙𝒊 = (𝒔𝒊 + 𝟏)/𝟐 → |𝒙𝒊⟩

2) Apply single-qubit rotations to every qubit to put the state of the QPU in superposition of all possible solutions of the 

optimization problem (Hadarmard gates)

Ψ 𝑁 𝑞𝑢𝑏𝑖𝑡𝑠 =
1

2𝑁
෍

𝑛=1

2𝑁

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑛 𝑛

(3) Apply two level gates and single qubits rotations to change the state, having some smart idea on how to increase the 

value of Ψ𝑛=𝑡𝑎𝑟𝑔𝑒𝑡
2

Algorithms are difficult to design because you are doing matrix multiplication with matrices of dimensions 

2𝑁 × 2𝑁– nature does it for you! you don’t need to do it but good luck simulating it

(4) Measure the state, read the qubits (they are a single bitstring after measurement) and hope to find the target(s). 

(5) Repeat the procedure many times and keep the best result.

A Quantum Optimization Algorithm



The Quantum Adiabatic Algorithm

AQC is based on a property of the time-dependent Schrödinger 

equation – the «adiabatic theorem».

Einstein’s “Adiabaten hypothese”: “If a system be affected in a reversible adiabatic way, 

allowed motions are transformed into allowed motions” (Einstein, 1914).

Albash, Lidar 

Rev. Mod. Phys. 90, 015002 (2018)

https://arxiv.org/abs/1611.04471

(1) Switch on a quantum interaction in your system

(2) Take the spectrum of possible energies of your quantum system as a function of the 

degrees of freedom and set the state to a well-defined energy (not metastable states) 

which is ranked nth in order of magnitude (e.g., the second smallest) 

(3) Do any Schrödinger evolution (no measurement! no noise!) that changes the energy 

states «sufficiently slow».

(4) Measure the energy of the state. You will find with 100% probability that the energy is 

ranked also nth

Adiabatic evolution (e.g., Slow Schrödinger) preserves the energy ranking of your system.

The smallest energy state (ground state) also maps into the ground state at the end.

▪ Apolloni 1989

▪ Finnila 1994

▪ Nishimori 1998

▪ Brooke 1999

▪ Fahri 2001

IDEA: map objective function into energy. Start from easy problem 

to solve with known solution and modify slowly to difficult. Measure 

unknown solution 

https://arxiv.org/abs/1611.04471


Using different models of Quantum Computers

• Gate-based computers

– For solving QUBOs, we can use algorithms like:

• Quantum Approximate Optimization Ansatz (QAOA)

• Variational Quantum Eigensolver (VQE)

– For optimization, algorithms can be understood as discretized adiabatic 

computation

– IBM/Google quantum computers are gate-based

• Quantum annealers

– They run a single quantum algorithm, quantum annealing

– Finite temperature implementation of adiabatic quantum evolution

– Analog computation

– D-Wave quantum annealer is the best-known example

Adiabatic Quantum Computing

1. Write objective function into energy of a Quantum System (ISING=QUBO⊂MINLP).

2. Start from easy problem to solve with known solution and modify slowly to difficult.

3. Measure unknown solution 

• Property of time-dependent Schroedinger equation – the «adiabatic theorem».

Solving ISING/QUBOs using Quantum Computing – How?



Problem Hamiltonian 𝑯𝑪

From an objective function we can construct a Hamiltonian on 𝑛 qubits by 

replacing 𝐱 ∈ 0,1 𝑛 with 𝐳 ∈ −1, +1 𝑛 obtaining a polynomial

𝑓 𝐳 = ෍

𝒞⊂ 1,…,𝑛

𝛼𝒞ෑ
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𝑧𝑗 =𝑒.𝑔. 𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1

We replace the Pauli z operator 𝜎𝑖
𝑧 for each 𝑧𝑖 variable leading to

𝐻𝐶 = σ𝒞⊂ 1,…,𝑛 𝛼𝒞 ⊗𝑗∈𝒞 𝜎𝑗
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Encoding solution of a problem as the ground state of a quantum 

Hamiltonian.

Initially proposed as an algorithm that simulated quantum 

fluctuation and tunneling

• Contrary to thermal fluctuations in Simulated Annealing

Adiabatic Quantum Computation



Quantum Approximate 
Optimization Algorithm



▪ Quantum Approximate Optimization 

Algorithm: review and status

▪ The «Quantum Alternating Operator Ansatz»

▪ Mixing Operators

▪ Examples

▪ Compiling and Executing

▪ The gate synthesis problem

▪ Review of compilation methods

▪ Compiling framework in nearest-

neighbor architectures 

▪ Quantum Approximate Optimization with Hard 

and Soft Constraints. Hadfield, S., Wang, Z., Rieffel, E. G., 

O'Gorman, B., Venturelli, D., & Biswas, R. (2017, November). 

In Proceedings of the Second International Workshop on Post Moores Era 

Supercomputing (pp. 15-21). ACM.

▪ From the quantum approximate optimization 

algorithm to a quantum alternating operator 

Ansatz Hadfield, S, Z. Wang, B. O'Gorman, E. G. Rieffel, D. Venturelli, 

and R. Biswas. arXiv preprint arXiv:1709.03489 (2017). Algorithms (2019).

• Best Paper Award MDPI Algorithms 

Journal

READING LIST
QAOA Tutorial Outline



• Gate-based quantum algorithm for QUBO 
optimization

• Iteratively alternates p times between applying two 
sets of operators: Mixing and Phase 
Shifting/Driving

– Induce entanglement and the objective function

• Requires as many qubits as the size of the problem

• Requires polynomially many gates compared to the 
problem size

• Is an approximation algorithm:

– One can theoretically prove that solution to any 
problem within a certain class using this algorithm 
will always be in a range (approximation ratio) of 
the true optimal

Quantum Approximate Optimization Algorithm

Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator

Guido Pagano, Aniruddha Bapat, Patrick Becker, Katherine S. Collins, Arinjoy De, Paul W. Hess, Harvey B. Kaplan, Antonis Kyprianidis, Wen Lin Tan, 

Christopher Baldwin, Lucas T. Brady, Abhinav Deshpande, Fangli Liu, Stephen Jordan, Alexey V. Gorshkov, Christopher Monroe

Proceedings of the National Academy of Sciences Oct 2020, 117 (41) 25396-25401; DOI: 10.1073/pnas.2006373117

• For MAXCUT of regular 3-degree graphs QAOA with p=1 has approximation ratio of 0.6942 vs. 2/3 of random guessing.

• For a satisfiability problem E3Lin2, QAOA with p=1 gave the best approximation ratio at the point.



Origins of the QAOA



1. Design a binary optimization classical Hamiltonian (“phase separation”)

2. Design a unitary operator that can connect and allow jumps between different 

states (“mixing”)

3. Prepare a QAOA state for some parameters

4. Measure the state in the computational value and compute the exp. value of C(z)

5. Change the parameters if they are not proven optimal and repeat 3-4

QAOA



Associate one qubit to each qi

Initialize the registers in a 

superposition of all possible 

bitstring 

𝜓 𝑖𝑛 = 2 ൗ𝑁 2
−1
෍

𝑆
|𝑠⟩

Assign to each superposed solution 

a phase proportional (arbitrary 

parameter 𝛾1)

to its objective function value

𝜓 𝑝𝑠 1 = 2 ൗ𝑁 2
−1
෍

𝑆
𝑒𝑖𝛾1𝐸𝑆|𝑠⟩

Phase separate again with new 𝛾2

After having repeated the algorithm 𝑝 times do 

measure in the computational base the expectation 

value of the objective function

𝜓 O 𝜓 𝑜𝑢𝑡 =෍
𝑠
O𝑠 B𝑝𝑠

2

Mix the amplitudes by a transverse field 

rotation exp(𝑖𝛽𝑋) on each qubit

(arbitrary parameter)
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Initialization 

operator Phase separation operator 

dependent on a parameter 𝛾1

𝜓 𝑖𝑛 =
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2𝑁
෍
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෍

𝑆
|𝑠⟩

Hadamard Gates
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Logical 2-qubit gate representing the Ising interaction
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Mix the amplitudes by a transverse field rotation 

exp(𝑖𝛽𝑋) on each qubit (arbitrary parameter)
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You need to 

schedule the gates 

for every term of 

the objective 

function !

Now if you measure, the probability of a bitstring 

depends both on 𝛾 and 𝛽 in a non-linear way. 

Quantum Approximate Optimization Algorithm: 
Example
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𝜓 QAOA 𝑝
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𝑠
B2𝑠 𝛽1, 𝛾1, 𝛽2, 𝛾2, … , 𝛽𝑝, 𝛾𝑝 𝑒𝑖Γ1𝑠 𝛽1,𝛾1,𝛽2,𝛾2,…,𝛽𝑝,𝛾𝑝 |𝑠⟩

Now if you measure, the probability of 

a bitstring depends both on 𝛾 and 𝛽 in 

a non-linear way. 

It is exponentially difficult to predict or 

simulate the probability 

B2𝑠 𝛽1, 𝛾1, 𝛽2, 𝛾2, … , 𝛽𝑝, 𝛾𝑝
2

to find the 

optimal unknown solution 𝑠∗

For 𝑝 → ∞ you can map this evolution to AQC; discrete becomes continuous; so, you know how to do it. 

For finite p there is currently not a lot of guidance, big sector of research.

The search over the parameter space 𝛾 and 𝛽 is done heuristically (e.g., Gradient descent)

Quantum Approximate Optimization Algorithm: 
Example



QAOA for Constrained 
Optimization Problems



Associate one qubit to each qi

Initialize the registers with a candidate 
solution found through genetic 
algorithm or greedy search 
|yin=|011010101100

Mix the system by generating a 
superposition of the initial solution 
with all possible others (arbitrary 
parameter)
|ymix=a|011010101100+ ∑k bk|fk

Assign to each superposed 
solution a phase proportional 
(arbitrary parameter)
to its objective function value
|ymix=aeigEin|011010101100
+ ∑k bke

igEk|fk

Mix with new b*

Add phases again 
with new g

* Stay in the computational subspace!

Only the logical subspace

All 2N bitstrings

|ymix= ∑S bs|s

QAOA for Constrained Combinatorial Optimization



│001 a│001+b│010 a’│001+b’│010+c’│100

XY(2,3) XY(2,3)

෍

𝒊

𝒒𝒊 = 𝒌

Enforcing the same number of bits=1 is the 

same as doing two spin-flips 

𝑋𝑌 = 𝑠
+
𝑠
−
+ 𝑠

−
𝑠
+

𝑪 ෍

𝒊

𝒒𝒊 − 𝒌

𝟐
Penalty 

Function

Difficult to scale, does not 

guarantee results, hardness 

is large softness

What you would want is to start from a 

classical bitstring, and then be able to 

“mix it” coherently in the subspace 

where the constraint is satisfied

Possible solution for these 

constraints: 𝑋𝑌-Mixers. 

The Problem of Hard Constraints



• Maximum Cut

• Max-SAT, Min-SAT, NAE-SAT

• Set Splitting

• MaxE3LIN2

• Max-ColorableSubgraph

• Graph Partitioning

• Maximum Bisection

• Max Vertex k-Cover

• MaxIndependentSet

• MaxClique

• MinVertexCover

• MaxSetPacking

• MinSetCover

• TSP

• SMS with various metrics and constraints

• …

Objective Function: Soft Constraints

Feasible States: Hard Constraints

QAOA Applications



Some unitary respecting:
• Preserve the feasible subspace

• Provide all-to-all nonzero transitions 

between all feasible states

• Non-necessarily time evolution of a 

local Hamiltonian

Some unitary 

respecting:
• Is diagonal in the computational 

basis

• The spectrum of 𝐻𝑃 encodes the 

objective function

Some initial state respecting:
• It is a superposition of several solutions 

in the feasible subspace

• It can be prepared efficiently

Alternating Operator Ansatz



▪ Babbush (2017)

▪ Verstraete (2009)

▪ Wang (2009)

▪ Childs (2002)

▪ …

Xu,c=1

Node u is 

colored by c

Phase Separator (QUBO objective function)

Initial state:

Alternating Operator Ansatz



exp(iHring) is difficult to implement

Respects the Hamming 

Weight constraint

3-coloring 4-coloring

Engineering Mixing Operators



34

1

3

5

7

2

4

6

8

UM=[U1U3U5U7] [U2U4U6U8] [U1U3U5U7] [U2U4U6U8]…

This couples only distance 2;

has to be repeated k/2 times 

∏aparityExp(iXaXa+1+YaYa+1)

All these 2-qubit k2/2 gates need to be scheduled

Respects the Hamming 

Weight constraint

exp(iHring) is difficult to implement

Desing Freedom and Tradeoffs



Xu,c=1

Node u is colored 
by c or uncolored 
(c=0)

Finding the largest induced subgraph colorable by k colors

XY

All these gates need to be scheduled

XY

x

x

x

x=

Still needs to be compiled to 2 qubit gates

Other Mixers (controlled XY)



In traveling salesman encoding

Xvj=1 if city v is visited as jth

(partitioned using edge coloring and parity  
≈(n-1)n2/4 mixers)

(needs to be repeated n(n-1)/2 times for all-to-all)

In single machine scheduling

Xjt=1 if job j starts at time t

(But if we add release dates then we need 
controls on the no-overlap constraint) 

26

Mixers Navigation&Scheduling



Bitflip mixers
• Maximum Cut
• Max-SAT, Min-SAT, NAE-SAT
• Set Splitting
• MaxE3LIN2
…

Controlled Bitflip mixers
• MaxIndependentSet
• MaxClique
• MinVertexCover
• MaxSetPacking
• MinSetCover
…

XY mixers
• Max-ColorableSubgraph
• Graph Partitioning
• Maximum Bisection
• Max Vertex k-Cover
…

Controlled XY mixers
• Max-k-ColorableInducedSubgraph
• MinGraphColoring
• MinCliqueCover
...

Permutation mixers
• TSP
• SMS with various metrics and constraints
…

27

(See Hadfield et al 2018 – «Quantum Alternating Operator Ansatz»)

Zoology of Ansatze



▪ Incomplete/Approximate: e.g. mixing of a limited 

number of variables randomly selected.

▪ Adaptive: e.g. changing the circuit at runtime based on 

parameter exploration.

▪ Unstructured: e.g. the cost function could be evaluated 

only by classical hardware and is not in the ansatz, like 

learning in a neural network.

▪ Overparametrized: e.g. some gates might have offset 

angles

▪ Digital-Analog: i.e. global pulsing techniques that 

generate multi-qubit long range interactions.

Recent Review Articles:

Noisy intermediate-scale quantum (NISQ) algorithms

Bharti et al. (Jan 2021) – arXiv:2101.08448

Variational Quantum Algorithms

Cerezo et al. (Dec 2020) – arXiv:2012.09265

Vanilla QAOA (Fahri 2014) and the QAOAnsatz

(Hadfield 2017) were just the start of the field of 

modern Quantum Optimization Approaches

Variations:

The Flexible Design of NISQ Quantum Optimization 
Algorithms



Variational Quantum Computing – AWS view



QAOA in the “Real World”



Barenco et al. 

(1995)

Kraus, Cirac 

(2001)

Vatan, Williams 

(2003)

Quantum Circuits can be composed by single 

and two-qubit gates of universal set*

CNOT, Ry(q) and Rz(a)

Each single qubit gate can be decomposed by 

single qubit rotations.

U1= Rz(a) Ry(b) Rz(g) eif

Each two qubit gate is reversible and it is 

representable by a Unitary Matrix.

RZ gates can be «virtually» compiled.

(McKay 2017 and refs)

* active research to natively support multi-qubit gates

Maximum number of elementary 1-qubit gates: 15

Maximum number of CNOTs: 3

Maximum depth assuming RY, RZ and 

simplifications: 11

The Gate Synthesis Problem



Performance of algorithms in NISQ 

will depend on aspects such as gate 

fidelities, parallelization, idle time, 

crosstalks..

Different Metrics to optimize correlate 

to final performance:

• Total Quantum Factor

• Quantum Volume

• Number of Two-Qubit Gates

• Makespan

Guerreschi and Park (2018). Two-step approach to scheduling 

quantum circuits. arXiv preprint arXiv:1708.00023.

Khatri, Sumeet, et al. "Quantum assisted quantum 

compiling." arXiv preprint arXiv:1807.00800 (2018).

Li, G., Ding, Y., & Xie, Y. (2018). Tackling the Qubit Mapping 

Problem for NISQ-Era Quantum Devices. arXiv preprint 

arXiv:1809.02573 (2018).

Oddi, Angelo, and Riccardo Rasconi. "Greedy Randomized Search 

for Scalable Compilation of Quantum Circuits." International 

Conference on the Integration of Constraint Programming, 

Artificial Intelligence, and Operations Research. Springer, Cham, 

(2018.

…

SWAP-Compilation (review)



Interaction graph obtained from 
quadratic objective function (MAXCUT)

• Every edge is a gate that needs to be 
executed (in arbitrary order)

• The same graph has to be executed 
multiple times (p rounds).

• Every qubit has to complete all the gates of 
round p before being involved in p+1

Counts the edges in the cut

Defines the cut

∑iXi
Mixes the two partitions

UPS=∏<jk>Exp(ibZjZk)

UM=∏jExp(igXj)

Example: MaxCut



n6 n8

n1 n2 n3

n4

n7

n5

q1

q5

q3

q4 q7

q6

Initial assignment

qi → ni

1 3

4 5

6 7

Interaction graph 

obtained from quadratic 

objective function 

(MAXCUT)

30

• Every edge is a gate that needs to be executed 

(in arbitrary order)

• The same graph has to be executed multiple 

times (p rounds).

• Every qubit has to complete all the gates of 

round p before being involved in p+1

Circuit Execution Schedule



1 3

4 5

q1

q5

q3

q4
q7

q6

Exp(iqZ1Z4)

Duration 2t2+4t1

CZCZ X X
X X

ZZ-Evolution Gate

Circuit Execution Schedule



q1

q5

q3

q4 q7

q6

SWAP  |Y 3  |0

CZ X CZ X CZ

XX Duration 3t2+4t1

=

From Unidirectional 

CNOTs to SWAP

1 3

4 5

Circuit Execution Schedule



SWAP+ZZ-Evolution 
Gate

Duration 3t2+4t1 (same as SWAP)

SWAPS can also be 
inserted as part of 
the UZZ interaction 
without the need to 
be sequential.

Circuit Execution Schedule



1 3

4 5

q1

q5

q3

q4 q7

q6

Circuit Execution Schedule

Objective: finding the makespan-minimizing Gantt Schedule for p=1, p=2, N=8, N=21

fast P-S (t=3)

slow P-S (t=4)

Swap (t=2)

Benchmark presented at ICAPS17
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Q14

Circuit Execution Schedule
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q4 q7
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Q14 Q13
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4 5

Circuit Execution Schedule
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Q14 Q13
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Circuit Execution Schedule
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Circuit Execution Schedule
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All actions of round 1 are completed – qubit can be mixed.
Qubit 1 can start participating to round 2.

Circuit Execution Schedule
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PS2

Circuit Execution Schedule



n6 n8

n1 n2 n3

n4

n7

n5

q1

q5

q4

q6

How to obtain these schedules efficiently?

Classical planning software is useful, and 
this is an active research field.

P-S(3,7) is fast on n1, n4

P-S(3,7) is slow on n4, n6

q3

q7

Circuit Execution Schedule



Let’s go to Amazon Braket

https://console.aws.amazon.com/braket

Amazon Braket for QAOA

https://console.aws.amazon.com/braket

