18-819F: Introduction to Quantum Computing 47-779/47-785: Quantum Integer Programming \& Quantum Machine Learning

Quantum Approximate (Alternating) Optimization Algorithm (Ansatz)
Lecture 12
2021.10.12

TTEPPER

Quiz III

Follow Lecture X in order to create an IBM Qiskit, DWave Leap, and Amazon Web Services account.
Access Amazon Braket on AWS and execute the QAOA example that we will show at the end of the lecture today.

Update a PDF with a proof that you have created each account and that you have executed the AWS Braket QAOA tutorial.

Agenda

- A Quantum Optimization Algorithm
- Quantum Adiabatic Algorithm
- Adiabatic Quantum Computing
- Quantum Approximate Optimization Algorithm (QAOA)
- QAOA for Constrained Optimization Problems
- Quantum Alternating Optimization Ansatz
- QAOA in the Real World
- Amazon Braket Exercise

TTEPPER

A Quantum Optimization Algorithm

1) Map a QUBO Objective function into Ising form and assign the logical identity of each spin variable to a qubit in the processor.

$$
x_{i}=(s i+1) / 2 \rightarrow|x i\rangle
$$

2) Apply single-qubit rotations to every qubit to put the state of the QPU in superposition of all possible solutions of the optimization problem (Hadarmard gates)

$$
|\Psi\rangle_{N} \text { qubits }=\frac{1}{\sqrt{2^{N}}} \sum_{n=1}^{2^{N}}|\operatorname{solution}(n)\rangle_{n}
$$

(3) Apply two level gates and single qubits rotations to change the state, having some smart idea on how to increase the value of $\left|\Psi_{n=\text { target }}\right|^{2}$

Algorithms are difficult to design because you are doing matrix multiplication with matrices of dimensions $2^{N} \times 2^{N}$ - nature does it for you! you don't need to do it but good luck simulating it
(4) Measure the state, read the qubits (they are a single bitstring after measurement) and hope to find the target(s).
(5) Repeat the procedure many times and keep the best result.

The Quantum Adiabatic Algorithm

AQC is based on a property of the time-dependent Schrödinger

 equation - the «adiabatic theorem».Einstein's "Adiabaten hypothese": "If a system be affected in a reversible adiabatic way, allowed motions are transformed into allowed motions" (Einstein, 1914).
(1) Switch on a quantum interaction in your system
(2) Take the spectrum of possible energies of your quantum system as a function of the degrees of freedom and set the state to a well-defined energy (not metastable states) which is ranked $\mathrm{n}^{\text {th }}$ in order of magnitude (e.g., the second smallest)
(3) Do any Schrödinger evolution (no measurement! no noise!) that changes the energy states «sufficiently slow».
(4) Measure the energy of the state. You will find with 100% probability that the energy is ranked also $\mathrm{n}^{\text {th }}$

Adiabatic evolution (e.g., Slow Schrödinger) preserves the energy ranking of your system. The smallest energy state (ground state) also maps into the ground state at the end.

IDEA: map objective function into energy. Start from easy problem to solve with known solution and modify slowly to difficult. Measure unknown solution

Albash, Lidar

Rev. Mod. Phys. 90, 015002 (2018)
https://arxiv.org/abs/1611.04471

- Apolloni 1989
- Finnila 1994
- Nishimori 1998
- Brooke 1999
- Fahri 2001

Adiabatic evolution

Universities Space Research Association

Solving ISING/QUBOs using Quantum Computing - How?

Adiabatic Quantum Computing

1. Write objective function into energy of a Quantum System (ISING=QUBOСMINLP).
2. Start from easy problem to solve with known solution and modify slowly to difficult.
3. Measure unknown solution

- Property of time-dependent Schroedinger equation - the «adiabatic theorem».

Using different models of Quantum Computers

- Gate-based computers
- For solving QUBOs, we can use algorithms like:
- Quantum Approximate Optimization Ansatz (QAOA)
- Variational Quantum Eigensolver (VQE)
- For optimization, algorithms can be understood as discretized adiabatic computation
- IBM/Google quantum computers are gate-based
- Quantum annealers
- They run a single quantum algorithm, quantum annealing
- Finite temperature implementation of adiabatic quantum evolution
- Analog computation
- D-Wave quantum annealer is the best-known example

ENGINEERING

Adiabatic Quantum Computation
 Energy

Encoding solution of a problem as the ground state of a quantum Hamiltonian.
Initially proposed as an algorithm that simulated quantum fluctuation and tunneling

- Contrary to thermal fluctuations in Simulated Annealing Problem Hamiltonian $\boldsymbol{H}_{\boldsymbol{C}}$
From an objective function we can construct a Hamiltonian on n qubits by replacing $\mathbf{x} \in\{0,1\}^{n}$ with $\mathbf{z} \in\{-1,+1\}^{n}$ obtaining a polynomial

Quantum Tunnelling

Adiabatic evolution

$$
H_{C}=\sum_{\mathcal{C} \subset\{1, \ldots, n\}} \alpha_{\mathcal{C}} \otimes_{j \in \mathcal{C}} \sigma_{j}^{Z}
$$

$$
\left[\begin{array}{cccccccc}
3 / 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 / 4 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 / 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 / 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 / 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 / 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 / 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 / 4
\end{array}\right]
$$

USRA

Quantum Approximate Optimization Algorithm

USRA Universities Space Research Association

QAOA Tutorial Outline

READING LIST

- Quantum Approximate Optimization Algorithm: review and status
- The «Quantum Alternating Operator Ansatz»
- Mixing Operators
- Examples
- Compiling and Executing
- The gate synthesis problem
- Review of compilation methods
- Compiling framework in nearestneighbor architectures
- Quantum Approximate Optimization with Hard and Soft Constraints. Hadfield, S., Wang, Z., Rieffel, E. G., O'Gorman, B., Venturelli, D., \& Biswas, R. (2017, November). In Proceedings of the Second International Workshop on Post Moores Era Supercomputing (pp. 15-21). ACM.
- From the quantum approximate optimization algorithm to a quantum alternating operator
Ansatz Hadfield, S, Z. Wang, B. O'Gorman, E. G. Rieffel, D. Venturelli, and R. Biswas. arXiv preprint arXiv:1709.03489 (2017). Algorithms (2019).
- Best Paper Award MDPI Algorithms Journal

Quantum Approximate Optimization Algorithm

- Gate-based quantum algorithm for QUBO optimization
- Iteratively alternates p times between applying two sets of operators: Mixing and Phase Shifting/Driving
- Induce entanglement and the objective function
- Requires as many qubits as the size of the problem
- Requires polynomially many gates compared to the problem size
- Is an approximation algorithm:
- One can theoretically prove that solution to any problem within a certain class using this algorithm will always be in a range (approximation ratio) of

Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator
Guido Pagano, Aniruddha Bapat, Patrick Becker, Katherine S. Collins, Arinjoy De, Paul W. Hess, Harvey B. Kaplan, Antonis Kyprianidis, Wen Lin Tan, Christopher Baldwin, Lucas T. Brady, Abhinav Deshpande, Fangli Liu, Stephen Jordan, Alexey V. Gorshkov, Christopher Monroe Proceedings of the National Academy of Sciences Oct 2020, 117 (41) 25396-25401; DOI: 10.1073/pnas.2006373117

- For MAXCUT of regular 3-degree graphs QAOA with $\mathrm{p}=1$ has approximation ratio of $0.6942 \mathrm{vs} .2 / 3$ of random guessing.
- For a satisfiability problem E3Lin2, QAOA with $p=1$ gave the best approximation ratio at the point.

USRA

Origins of the QAOA

MIT-CTP/4610
A Quantum Approximate Optimization Algorithm

$$
|\boldsymbol{\beta}, \boldsymbol{\gamma}\rangle=Q_{p}(\boldsymbol{\beta}, \boldsymbol{\gamma})|s\rangle
$$

Edward Farhi and Jeffrey Goldstone
Center for Theoretical Physics

$$
Q_{p}(\boldsymbol{\beta}, \gamma)=U_{\mathrm{M}}\left(\beta_{p}\right) U_{\mathrm{P}}\left(\gamma_{p}\right) \cdots U_{\mathrm{M}}\left(\beta_{1}\right) U_{\mathrm{P}}\left(\gamma_{1}\right)
$$

Massachusetts Institute of Technology
Cambridge, MA 02139

Sam Gutmann

Abstract
We introduce a quantum algorithm that produces approximate solutions for combinatorial optimization problems. The algorithm depends on an integer $p \geq 1$ and the quality of the approximation improves as p is increased. The quantum circuit that implements the algorithm consists of unitary gates whose locality is at most the locality of the objective function whose optimum is sought. The depth of the circuit grows linearly with p times (at worst) the number of constraints. If p is fixed, that is, independent of the input size, the algorithm makes use of efficient classical preprocessing. If p grows with the input size a different strategy is proposed. We study the algorithm as applied to MaxCut on regular graphs and analyze its performance on 2-regular and 3-regular graphs for fixed p. For $p=1$, on 3 -regular graphs the quantum algorithm always finds a cut that is at least 0.6924 times the size of the optimal cut.

$$
\begin{array}{ll}
F_{p}(\boldsymbol{\gamma}, \boldsymbol{\beta})=\langle\boldsymbol{\gamma}, \boldsymbol{\beta}| C|\boldsymbol{\gamma}, \boldsymbol{\beta}\rangle & M_{p} \geq M_{p-1} \\
M_{p}=\max _{\boldsymbol{\gamma}, \boldsymbol{\beta}} F_{p}(\boldsymbol{\gamma}, \boldsymbol{\beta}) & \lim _{p \rightarrow \infty} M_{p}=\max _{z} C(z)
\end{array}
$$

QAOA

1. Design a binary optimization classical Hamiltonian ("phase separation")
2. Design a unitary operator that can connect and allow jumps between different states ("mixing")
3. Prepare a QAOA state for some parameters

$$
\begin{aligned}
& |\boldsymbol{\beta}, \boldsymbol{\gamma}\rangle=Q_{p}(\boldsymbol{\beta}, \boldsymbol{\gamma})|s\rangle \\
& Q_{p}(\boldsymbol{\beta}, \boldsymbol{\gamma})=U_{\mathrm{M}}\left(\beta_{p}\right) U_{\mathrm{P}}\left(\gamma_{p}\right) \cdots U_{\mathrm{M}}\left(\beta_{1}\right) U_{\mathrm{P}}\left(\gamma_{1}\right)
\end{aligned}
$$

4. Measure the state in the computational value and compute the exp. value of $\mathrm{C}(\mathrm{z})$

$$
\begin{array}{ll}
F_{p}(\boldsymbol{\gamma}, \boldsymbol{\beta})=\langle\boldsymbol{\gamma}, \boldsymbol{\beta}| C|\boldsymbol{\gamma}, \boldsymbol{\beta}\rangle & M_{p} \geq M_{p-1} \\
M_{p}=\max _{\boldsymbol{\gamma}, \boldsymbol{\beta}} F_{p}(\boldsymbol{\gamma}, \boldsymbol{\beta}) & \lim _{p \rightarrow \infty} M_{p}=\max _{z} C(z)
\end{array}
$$

5. Change the parameters if they are not proven optimal and repeat 3-4

Vanilla QAOA

$$
|\psi\rangle_{\operatorname{mix}(2)}=\left(2^{N / 2}\right)^{-1} \sum_{S} B_{2 s}\left(\beta_{1}, \gamma_{1}, \beta_{2}, \gamma_{2}\right) e^{i\left(\Gamma_{2 s}\left(\beta_{1}, \gamma_{1}, \beta_{2}, \gamma_{2}\right)\right)}|S\rangle
$$

$O_{\mathrm{QUBO}}(q)=\sum_{i=1}^{N} a_{i} q_{i}+\sum_{i=1}^{N} \sum_{j=i+1}^{N} b_{i j} q_{i} q_{j}$

Associate one qubit to each q_{i}

Initialize the registers in a superposition of all possible bitstring

$$
|\psi\rangle_{i n}=\left(2^{N / 2}\right)^{-1} \sum_{S}|S\rangle
$$

Assign to each superposed solution a phase proportional (arbitrary parameter γ_{1})
to its objective function value
Phase separate again with new γ_{2}

$$
|\psi\rangle_{p s(1)}=\left(2^{N / 2}\right)^{-1} \sum_{S} e^{i \gamma_{1} E_{S}}|S\rangle
$$

After having repeated the algorithm p times do measure in the computational base the expectation value of the objective function

$$
\langle\psi| \mathrm{O}|\psi\rangle_{\text {out }}=\sum_{s} \mathrm{O}_{s}\left|\mathrm{~B}_{p s}\right|^{2}
$$

Mix the amplitudes by a transverse field rotation $\exp (i \beta X)$ on each qubit
(arbitrary parameter)
$|\psi\rangle_{\text {mix (1) }}$
$=\left(2^{N / 2}\right)^{-1} \sum_{S} \mathrm{~B}_{1 s}\left(\beta_{1}, \gamma_{1}\right) e^{i \Gamma_{1 s}\left(\beta_{1}, \gamma_{1}\right)}|s\rangle$

Quantum Approximate Optimization Algorithm: Example

Initialization

Mix the amplitudes by a transverse field rotation $\exp (i \beta X)$ on each qubit (arbitrary parameter)

$$
|\psi\rangle_{\operatorname{mix}(1)}
$$

$$
=\left(2^{N / 2}\right)^{-1} \sum_{s} \mathrm{~B}_{1 s}\left(\beta_{1}, \gamma_{1}\right) e^{i \Gamma_{1 s}\left(\beta_{1}, \gamma_{1}\right)}|s\rangle
$$

Now if you measure, the probability of a bitstring depends both on γ and β in a non-linear way.
operator

Phase separation operator dependent on a parameter γ_{1}
Hadamard Gates

$$
\begin{aligned}
|\psi\rangle_{i n} & \left.\left.=\frac{1}{\sqrt{2^{N}}} \sum_{n=1}^{2^{N}} \right\rvert\, \text { solution(n) }\right\rangle \\
& =\left(2^{N / 2}\right)^{-1} \sum_{S}|S\rangle
\end{aligned}
$$

$$
\underbrace{\exp \left(i \beta Z_{1} Z_{2}\right)}\left|s_{1} s_{2}\right\rangle=e^{i \gamma_{1} s_{1} s_{2}}\left|s_{1} s_{2}\right\rangle
$$

Logical 2-qubit gate representing the Ising interaction

$$
\left.\left.|\psi\rangle_{p s(1)}=\frac{1}{\sqrt{2^{N}}} \sum_{n=1}^{2^{N}} e^{i E_{n}} \right\rvert\, \text { solution }(n)\right\rangle
$$

You need to schedule the gates for every term of the objective function!

Quantum Approximate Optimization Algorithm:
 Example

Now if you measure, the probability of a bitstring depends both on γ and β in a non-linear way.
It is exponentially difficult to predict or simulate the probability
$\left|\mathrm{B}_{2 s}\left(\beta_{1}, \gamma_{1}, \beta_{2}, \gamma_{2}, \ldots, \beta_{p}, \gamma_{p}\right)\right|^{2}$ to find the optimal unknown solution s^{*}

$$
\begin{aligned}
& |\psi\rangle_{\mathrm{QAOA}(p)} \\
& =\left(2^{N / 2}\right)^{-1} \sum_{s} \mathrm{~B}_{2 s}\left(\beta_{1}, \gamma_{1}, \beta_{2}, \gamma_{2}, \ldots, \beta_{p}, \gamma_{p}\right) e^{i \Gamma_{1 s}\left(\beta_{1}, \gamma_{1}, \beta_{2}, \gamma_{2}, \ldots, \beta_{p}, \gamma_{p}\right)}|s\rangle
\end{aligned}
$$

For $p \rightarrow \infty$ you can map this evolution to AQC ; discrete becomes continuous; so, you know how to do it. For finite p there is currently not a lot of guidance, big sector of research.
The search over the parameter space γ and β is done heuristically (e.g., Gradient descent)

QAOA for Constrained Optimization Problems

TEPPER

QAOA for Constrained Combinatorial Optimization

* Stay in the computational subspace!

Associate one quit to each q_{i}

Initialize the registers with a candidate solution found through genetic algorithm or greedy search $|\psi\rangle_{\mathrm{in}}=|011010101100\rangle$

Mix the system by generating a superposition of the initial solution with all possible others (arbitrary parameter)

$$
|\psi\rangle_{\text {mix }}=\alpha|011010101100\rangle+\sum_{k} \beta_{k}\left|\phi_{k}\right\rangle
$$

Assign to each superposed solution a phase proportional
(arbitrary parameter)
to its objective function value
$|\psi\rangle_{\text {mix }}=\alpha \mathrm{e}^{\mathrm{i} \gamma \mathrm{E}_{\text {in }}}|011010101100\rangle$
$+\sum_{k} \beta_{k}{ }^{\mathrm{i} \gamma \mathrm{F}_{\mathrm{k}}}\left|\phi_{\mathrm{k}}\right\rangle$

Only the logical subspace

$$
|\psi\rangle_{\text {mix }}=\sum_{s} \beta_{s}|s\rangle_{,}
$$ All 2^{N} bitstrings

The Problem of Hard Constraints

Difficult to scale, does not guarantee results, hardness is large softness

Possible solution for these constraints: XY-Mixers.

What you would want is to start from a classical bitstring, and then be able to "mix it" coherently in the subspace where the constraint is satisfied

$$
\begin{aligned}
& \text { Enforcing the same number of bits=1 is the } \\
& \text { same as doing two spin-flips } \\
& \qquad X Y=s^{+} s^{-}+s^{-} s^{+}
\end{aligned}
$$

QAOA Applications

- Maximum Cut
- Max-SAT, Min-SAT, NAE-SAT
- Set Splitting
- MaxE3LIN2
- Max-ColorableSubgraph
- Graph Partitioning
- Maximum Bisection
- Max Vertex k-Cover
- MaxIndependentSet
- MaxClique
- MinVertexCover
- MaxSetPacking
- MinSetCover
- TSP
- SMS with various metrics and constraints
- ...

Objective Function: Soft Constraints
Feasible States: Hard Constraints

Quantum Approximate Optimization with Hard and Soft Constraints
Stuart Hadfield ${ }^{*}$, Zhihui Wang ${ }^{+, * *}$, Eleanor G. Rieffel ${ }^{+}$,
Bryan O'Gorman ${ }^{+, \dagger}$, Davide Venturelli ${ }^{+, * *}$, Rupak Biswas ${ }^{+}$
Department of Computer Science, Columbia University, New York, NY +Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA
** Universities Space Research Association, Mountain View, CA \dagger Stinger Ghaffarian Technologies, Inc., Greenbelt, MD

Challenging computational problems arising in the practical world are frequently tackled by heuristic algorithms. Small universal qua tum computers will emerge in the next year or two, enabling a sub stantial broadening of the types of quantum heuristics that can be investigated beyond quantum anmealing. The immediate questio is: what experiments should we prioritize that will give us insigh into quantum heuristics? One leading candidate is the quantum approximate optimization algorithm (QAOA) metaheuristic. In this work, we provide a framework for designing QAOA circuits for a variety of combinatorial optimization problems with both har constrans inust be met and sol constrants whose vilation we wish to minimize. We wo discuss design principles.

CCS CONCEPTS

- Mathematics of computing \rightarrow Approximation algorithms; - Hardware \rightarrow Emerging technologies; Quantum computa tion. \cdot Theory of computation \rightarrow Quantum computation theory: Mathematical optimization:
advantage, and if so, how to design quantum algorithms that real ize such advantages. Today, challenging computational problems arising in the practical world are frequently tackled by heuristic algorithms, which by definition have not been analytically proven to be the best approach, or even proven analytically to outperform the best approach of the previous year. Rather, these algorithms are empirically shown to be effective, by running them on characteristic sets of problems, or demonstrating their effectiveness in practical proach to algorithm design becomes available for the evaluation of quantum heuristic algorithms.
For several years now, special-purpose quantum hardware has For several years now, special-purpose quantum hardware has been used to explore one quantum heuristic algorithm, quantum
annealing. Emerging gate-model processors, which are universal annealing. Emerging gate-model processors, which are universal
in that, once scaled up, they can run any quantum algorithm, will enable investigation of a much broader array of quantum heuristics beyond quantum annealing. Within the last year, IBM has made available publicly through the cloud a 5 -qubit gate-model chip [13] and announced recently an upgrade to a 17 -qubit chip. Likewise Google [3] and Rigetti Computing [22], anticipate providing proces sors with 40-100 qubits within a year or two [18]. Many academic

Alternating Operator Ansatz

Some initial state respecting:

- It is a superposition of several solutions in the feasible subspace
- It can be prepared efficiently

Some unitary respecting:

- Preserve the feasible subspace
- Provide all-to-all nonzero transitions between all feasible states
- Non-necessarily time evolution of a local Hamiltonian

Some unitary respecting:

- Is diagonal in the computational basis
- The spectrum of H_{P} encodes the objective function

$$
H_{f}|\mathbf{x}\rangle=f(\mathbf{x})|\mathbf{x}\rangle
$$

TTEPPER

Alternating Operator Ansatz

$$
\begin{aligned}
& \text { Node u is } \\
& \text { colored by c } \\
& X_{u, c}=1
\end{aligned} \quad m-\sum_{\{u, v\} \in E} \sum_{a=1}^{k} x_{u, a} x_{v, a}
$$

Phase Separator (QUBO objective function)

$$
H_{\mathrm{P}}^{\prime}=\frac{4-\kappa}{4} m I+\frac{1}{4} \sum_{\{u, v\} \in E} \sum_{a=1}^{\kappa}\left(Z_{u, a}+Z_{v, a}-Z_{u, a} Z_{v, a}\right)
$$

Initial state:

$$
|W\rangle_{v}=\frac{1}{\sqrt{k}}(|100 \cdots 0\rangle+|010 \cdots 0\rangle+|0 \cdots 01\rangle)
$$

- Babbush (2017)
- Verstraete (2009)
- Wang (2009)
- Childs (2002)

Engineering Mixing Operators

$$
\begin{aligned}
& H_{\text {ring }}^{(\mathrm{enc})}=\sum_{a}^{d}\left(X_{a} X_{a+1}+Y_{a} Y_{a+1}\right) \\
& \quad \exp \left(\mathrm{iH}_{\text {ring }}\right) \text { is difficult to implement }
\end{aligned}
$$

Respects the Hamming Weight constraint

3-coloring

4-coloring

TTEPPER

Desing Freedom and Tradeoffs

$$
H_{\mathrm{ring}}^{(\mathrm{enc})}=\sum_{a}^{d}\left(X_{a} X_{a+1}+Y_{a} Y_{a+1}\right)
$$

Respects the Hamming Weight constraint

$\exp \left(\mathrm{iH}_{\text {ring }}\right)$ is difficult to implement

This couples only distance 2 ;
has to be repeated $\mathrm{k} / 2$ times
All these 2-qubit $\mathbf{k}^{\mathbf{2}} / \mathbf{2}$ gates need to be scheduled

Other Mixers (controlled XY)

Finding the largest induced subgraph colorable by k colors

Node u is colored by cor uncolored (c=0)

$$
X_{u, c}=1
$$ ENGINEERING

Mixers Navigation\&Scheduling

In traveling salesman encoding

$$
\mathrm{X}_{\mathrm{vj}}=1 \text { if city } \mathrm{v} \text { is visited as } \mathrm{j}^{\text {th }}
$$

$$
\sum_{\{u, v\} \in E} d_{u, v} \sum_{j=1}^{n}\left(x_{u, j} x_{v, j+1}+x_{v, j} x_{u, j+1}\right)
$$

$$
H_{\mathrm{PS},\{i, j\},\{u, v\}}^{(\mathrm{enc})}=S_{u, i}^{+} S_{v, j}^{+} S_{u, j}^{-} S_{v, i}^{-}+S_{u, i}^{-} S_{v, j}^{-} S_{u, j}^{+} S_{v, i}^{+},
$$

(partitioned using edge coloring and parity

$$
\left.\approx(n-1) n^{2} / 4 \text { mixers }\right)
$$

(needs to be repeated $n(n-1) / 2$ times for all-to-all)

In single machine scheduling

$$
\begin{gathered}
\mathrm{X}_{\mathrm{jt}}=1 \text { if job } \mathrm{j} \text { starts at time } \mathrm{t} \\
C=\sum_{j} w_{j} \sum_{\left(d_{j}-p_{j}\right)<t<h} x_{j, t}\left(t+p_{j}-d_{j}\right)
\end{gathered}
$$

$$
H_{\mathrm{TS}, t,\{i, j\}}^{\text {(enc) }}=S_{i, t+p_{j}}^{+} S_{j, t}^{+} S_{i, t}^{-} S_{j, t+p_{i}}^{-}+S_{i, t}^{+} S_{j, t+p_{i}}^{+} S_{i, t+p_{j}}^{-} S_{j, t}^{-}
$$

(But if we add release dates then we need controls on the no-overlap constraint)

Zoology of Ansatze

(See Hadfield et al 2018 - «Quantum Alternating Operator Ansatz»)

Bitflip mixers

- Maximum Cut
- Max-SAT, Min-SAT, NAE-SAT
- Set Splitting
- MaxE3LIN2

Controlled Bitflip mixers

- MaxIndependentSet
- MaxClique
- MinVertexCover
- MaxSetPacking
- MinSetCover

XY mixers

- Max-ColorableSubgraph
- Graph Partitioning
- Maximum Bisection
- Max Vertex k-Cover

Controlled XY mixers

- Max-k-ColorableInducedSubgraph
- MinGraphColoring
- MinCliqueCover

Permutation mixers

- TSP
- SMS with various metrics and constraints

From the Quantum Approximate
Optimization Algorithm to a
Quantum Alternating Operator Ansatz
Stuart Hadfield*, Zhihui Wang ${ }^{+, * *}$, Bryan O'Gorman ${ }^{+, \uparrow, \ddagger}$, Eleanor G. Rieffel ${ }^{+}$ Davide Venturelli ${ }^{+, * *}$, Rupak Biswas ${ }^{+}$

* Department of Computer Science, Columbia University, New York, NY

Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA USRA Research Institute for Advanced Computer Science (RIACS), Mountaiin View, CA Stinger Ghaffarian Technologies, Inc., Greenbelt, MD
Berkeley Quantum Information and Computation Center and Departments of Chemistry and Computer Science, University of California, Berkeley, CA

September 12, 201

The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. O particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to sig nificantly expand the breadth of applications for which quantum computer have an established advantage. A leading candidate is Farhi et al.'s Quantun Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, the consideration of general parameterized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas.

The Flexible Design of NISQ Quantum Optimization Algorithms

Vanilla QAOA (Fahri 2014) and the QAOAnsatz (Hadfield 2017) were just the start of the field of modern Quantum Optimization Approaches

Variations:

- Incomplete/Approximate: e.g. mixing of a limited number of variables randomly selected.
- Adaptive: e.g. changing the circuit at runtime based on parameter exploration.
- Unstructured: e.g. the cost function could be evaluated only by classical hardware and is not in the ansatz, like learning in a neural network.
- Overparametrized: e.g. some gates might have offset angles
- Digital-Analog: i.e. global pulsing techniques that generate multi-qubit long range interactions.

Recent Review Articles:

Noisy intermediate-scale quantum (NISQ) algorithms Bharti et al. (Jan 2021) - arXiv:2101.08448

Variational Quantum Algorithms
Cerezo et al. (Dec 2020) - arXiv:2012.09265

Variational Quantum Computing - AWS view

Near-term quantum computers will be used as co-processors

QAOA in the "Real World"

The Gate Synthesis Problem

Quantum Circuits can be composed by single and two-qubit gates of universal set*
CNOT, $\mathbf{R}_{\mathbf{y}}(\mathbf{q})$ and $\mathbf{R}_{\mathrm{z}}(\mathbf{a})$

Barenco et al.

 (1995)Kraus, Cirac (2001)

Vatan, Williams
(2003)

Maximum number of elementary 1-qubit gates: 15 Maximum number of CNOTs: $\mathbf{3}$
Maximum depth assuming $\mathrm{R}_{\mathrm{Y}}, \mathrm{R}_{\mathrm{Z}}$ and simplifications: $\mathbf{1 1}$

SWAP-Compilation (review)

Performance of algorithms in NISQ will depend on aspects such as gate fidelities, parallelization, idle time, crosstalks..

Different Metrics to optimize correlate to final performance:

- Total Quantum Factor
- Quantum Volume
- Number of Two-Qubit Gates
- Makespan

Khatri, Sumeet, et al. "Quantum assisted quantum compiling." arXiv preprint arXiv:1807.00800 (2018).

Li, G., Ding, Y., \& Xie, Y. (2018). Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices. arXiv preprint arXiv:1809.02573 (2018).

Oddi, Angelo, and Riccardo Rasconi. "Greedy Randomized Search for Scalable Compilation of Quantum Circuits." International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Springer, Cham, (2018.

Example: MaxCut

$\sum_{i} X_{i} \quad$ Mixes the two partitions

$$
\left.U_{P S}=\Pi_{\langle j k\rangle}\right\rangle \operatorname{Exp}\left(i b z_{j} z_{k}\right)
$$

$$
\mathrm{U}_{\mathrm{M}}=\Pi_{\mathrm{j}} \operatorname{Exp}\left(\mathrm{ig} \mathrm{X}_{\mathrm{j}}\right)
$$

Interaction graph obtained from quadratic objective function (MAXCUT)

$P S 1$	$M X$	$P S 2$
$\operatorname{P-S}\left(q_{1}, q_{4}\right)$	$\operatorname{MIX}\left(q_{1}\right)$	$\operatorname{P-S}\left(q_{1}, q_{4}\right)$
$\operatorname{P-S}\left(q_{1}, q_{3}\right)$	$\operatorname{MIX}\left(q_{3}\right)$	$\operatorname{P-S}\left(q_{1}, q_{3}\right)$
$\operatorname{P-S}\left(q_{3}, q_{4}\right)$	$\operatorname{MIX}\left(q_{4}\right)$	$\operatorname{P-S}\left(q_{3}, q_{4}\right)$
$\operatorname{P-S}\left(q_{3}, q_{7}\right)$	$\operatorname{MIX}\left(q_{5}\right)$	$\operatorname{P-S}\left(q_{3}, q_{7}\right)$
$\operatorname{P-S}\left(q_{4}, q_{7}\right)$	$\operatorname{MIX}\left(q_{6}\right)$	$\operatorname{P-S}\left(q_{4}, q_{7}\right)$
$\operatorname{P-S}\left(q_{6}, q_{7}\right)$	$\left.q_{7}\right)$	
$\operatorname{P-S}\left(q_{5}, q_{6}\right)$	$\operatorname{MIX}\left(q_{7}\right)$	$\operatorname{P-S}\left(q_{5}, q_{6}\right)$
$\operatorname{P-S}\left(q_{1}, q_{5}\right)$		$\operatorname{P-S}\left(q_{1}, q_{5}\right)$

- Every edge is a gate that needs to be executed (in arbitrary order)
- The same graph has to be executed multiple times (p rounds).
- Every qubit has to complete all the gates of round p before being involved in $p+1$

Circuit Execution Schedule

Interaction graph
obtained from quadratic objective function (MAXCUT)

- Every edge is a gate that needs to be executed (in arbitrary order)
- The same graph has to be executed multiple times (p rounds).
- Every qubit has to complete all the gates of round p before being involved in $p+1$
\rightarrow TEPPER

Circuit Execution Schedule

Circuit Execution Schedule

TTEPPER
URA Universities Space Research Association

Circuit Execution Schedule

SWAPS can also be inserted as part of the UZZ interaction without the need to be sequential.

SRA Universities Space Research Association

Circuit Execution Schedule

fast P-S $(\tau=3)$
slow P-S $(\tau=4)$
Swap $(\tau=2)$
Benchmark presented at ICAPS17

Objective: finding the makespan-minimizing Gantt Schedule for $p=1, p=2, N=8, N=21$

(\rightarrow El Electrical \& Computer

Circuit Execution Schedule

(\rightarrow Electrical \& Computer
TTEPPER
USRA Universities Space Research Association

Circuit Execution Schedule

($)$ Electrical \& Computer
T TEPPER
USRA Universities Space Research Association

Circuit Execution Schedule

T TEPPER
USRA Universities Space Research Association

Circuit Execution Schedule

TTEPPER
USRA Universities Space Research Association

Circuit Execution Schedule

All actions of round 1 are completed - qubit can be mixed. Qubit 1 can start participating to round 2.

1 SRA Universities Space Research Association

Circuit Execution Schedule

USRA

Circuit Execution Schedule

$\mathrm{P}-\mathrm{S}(3,7)$ is fast on $\mathrm{n}_{1}, \mathrm{n}_{4}$ $\mathrm{P}-\mathrm{S}(3,7)$ is slow on $\mathrm{n}_{4}, \mathrm{n}_{6}$

How to obtain these schedules efficiently?

Classical planning software is useful, and this is an active research field.

Amazon Braket for QAOA

Let's go to Amazon Braket
https://console.aws.amazon.com/braket

$\nrightarrow(\Varangle$ Electrical \& Computer

